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Zusammenfassung

Diese Arbeit behandelt diskrete Waveletfunktionen, welche so konstruiert werden, dass sie vorgegebene
Muster ann̈ahern. F̈ur den Entwurf von biorthogonalen Waveletbasen stellen wir einen Ansatz vor, welcher
das sogenannte Lifting Scheme verwendet. Dieses Schema stellt eine Parametrisierung aller biorthogona-
len Waveletbasen dar. Mithilfe dieses Schemas kann man die Waveletkonstruktion auf ein lineares Aus-
gleichsproblem zur̈uckführen. Die Berechnung der optimalen Lösung wird durch die spezielle Struktur des
Problems sehr effizient.

Jede verfeinerbare Funktion, welche perfekte Rekonstruierbarkeit ermöglicht, kann als duale Genera-
torfunktion eingesetzt werden. Durch die Wahl der Generatorfunktion wird gleichzeitig die Glattheit der
zugeḧorigen Waveletfunktion festgelegt. Weiter wird der Frage nachgegangen, wie man auch die Glattheit
der primalen Waveletfunktionen sicherstellen kann. Eine vielversprechende Möglichkeit besteht darin, die
diskrete Wavelettransformation leicht abzuwandeln. Man erhält so einen Spezialfall der Wavelettransfor-
mation mit doppelter Koeffizientendichte. Waveletbasenpaare, welche bei dieser Transformation verwendet
werden k̈onnen, erreichen sowohl hohe Glattheit als auch eine gute Annäherung der dualen Waveletfunk-
tionen an das vorgegebene Muster. Da die Anzahl der Abtastwerte durch die Transformation verdoppelt
wird, ist diese Transformation redundant. Die Waveletkonstruktion und die entsprechende Transformation
werden an MEG-Daten und an der Prozessüberwachung von Linearführungen getestet.

Neben diesem Hauptergebnis wird dieÜbertragungsmatrix von verfeinerbaren Funktionen untersucht.
Es werden interessante Eigenschaften und effiziente Berechnungen des Spektralradius, der Summe der
Eigenwertpotenzen und der Determinante hergeleitet. Außerdem wird eine allgemeine Lifting-Zerlegung
für alle Filterb̈anke der CDF-Familie vorgestellt.

Die mathematische Notation weicht in mancher Hinsicht von derüblichen Notation ab und orientiert
sich an der funktionalen Programmierung. Die FOURIER-Transformation wird vermieden, soweit dies sinn-
voll ist, so dass die Berechnungen einfacher in Computerprogrammeübersetzt werden k̈onnen. Es werden
Symbole f̈ur die Skalierung und Verschiebung von Funktionen eingeführt und als Rechenoperationen be-
handelt, welche bislang nur zur Veranschaulichung eingesetzt wurden.

Abstract

This thesis addresses the problem of constructing a discrete wavelet approximating the shape of a given
pattern. For the design of a biorthogonal wavelet basis we present an approach, which is based on the lifting
scheme. The lifting scheme is a parametrisation of all biorthogonal wavelets. It reduces our problem to
a linear least squares problem. The special structure of the problem allows for an efficient optimisation
algorithm.

Every refinable function can be used as a dual generator, if it respects the perfect reconstruction con-
straints. The smoothness of the generator also implies the smoothness of the dual wavelet. Strategies
for obtaining also a smooth primal wavelet function are discussed. The most promising way includes a
slight modification of the discrete wavelet transform, leading to a special case of the so called double den-
sity transform. With this modification we can achieve both good matching and high smoothness of the
wavelets. It doubles the amount of data and is thus redundant. The method is applied to the analysis of
MEG data and to the condition monitoring on linear guideways.

Furthermore the transfer matrix of refinable functions is explored in various ways. Interesting properties
and efficient computations of the spectral radius, the sum of eigenvalue powers, and the determinant are
investigated. An explicit lifting decomposition of CDF filter banks is shown.

The mathematical details are presented in a notation inspired by functional programming. Since the
FOURIER transform is avoided where this is sensible, the results are easily accessible for implementation
in computer programs. Symbols for function scaling and translation that were only used for illustrative
purposes in former wavelet related papers are now integrated into a strict formalism.
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Chapter 1

Introduction

1.1 Problem

The wavelet transform is a tool for decomposing signals into bricks. Signals can be time series like audio
signals, two dimensional data like images and so on. This is similar to the FOURIER transform where
a signal is decomposed into waves of different frequencies. It allows to determine cycles in the signal.
But the waves cover the whole considered interval and thus local features of a signal cannot be retrieved
from the transformed data. In contrast to that, the wavelet transform uses bricks, which are narrow in the
spatial domain, but which are also able to resolve frequencies or scales. This is similar to the wave-particle
dualism in quantum theory. Indeed realizations like HEISENBERG’s uncertainty principle are also essential
for wavelet analysis.

We do now try to characterise the bricks of the wavelet transform, namely the wavelets.

A waveletis a function that is concentrated both in the spatial domain and in the frequency
domain.

“Spatial domain” also includes “time”. The concentration in the frequency domain causes oscillations in
the function, hence the name “wavelet” as synonym for “small wave”. Each type of wavelet transform
needs wavelet functions with specific properties. More specific definitions can be given when considering
transform instances.

All bricks of the wavelet transform are derived from a prototype by translation and dilation. The
transforms detect the same pattern at different sizes, i.e. scales. A signal which has similar features of
sizes over many different magnitudes is called to have a multi-scale structure. We know this structure from
fractals and many natural phenomena. Last but not least this document exhibits a multi-scale organisation
constructed of chapters, section, subsections and so on.

Over the last decades a lot of research was done in wavelet analysis. There are two main kinds of
wavelet transforms which are widely applied:

The continuous wavelet transform is an integral transform just for mathematical purposes. Translation
and dilation of the input signal simply translates the result. It can be discretised but the discretised transform
increases the amount of data considerably and the result data is redundant, yet not suitable for numerically
stable inversion of the transform. Consequently the continuous wavelet transform is mainly applied for
analysis and visualisation, e.g. of medical and seismic data [DHK+03].

The discrete counterpart of the wavelet transform is not just a discretisation of the continuous transform.
This is rather different from the situation of the FOURIER transform as we will see in more detail in
Chapter2. The discrete transform is designed for perfect reconstruction, high computation speed and no
output redundancy. The disadvantages are that it reacts sensible on translations and dilations of the input
signal and that the choice of wavelets is quite restricted. The discrete wavelet transform is successfully
applied in audio [VK95, Mal99] and image compression [SP96, TM02, Str02], even suitable for hardware
accelerated compression [Rit02], as well as for the solution of partial differential equations as alternative to
finite element methods [Dah97, DDHS97, BBC+01]. In contrast to that, the de-noising of signals, which
is also a popular application, suffers from artifacts in the reconstructed signal or too much smoothing.

7



8 CHAPTER 1. INTRODUCTION

There is an application which was not payed so much attention to in the past: The detection of certain
patterns in a signal. The continuous wavelet transform is quite good at finding occurrences of certain
patterns in a signal but it is computationally expensive and unable to extract or remove these patterns
cleanly. The discrete wavelet transform suffers from the restricted choice of admissible wavelet functions.
In Chapter3 we will derive a method for designing wavelets which match a given pattern. The resulting
filter banks will not be satisfying due to their insufficient numerical stability. This problem is treated in
Chapter4. Finally, Chapter5 completes this work with implementation details, potential applications and
experiments.

Acknowledgements I thank Professor Maaß for his motivation and consultation about this thesis. There
was a fruitful discussion with and assistance by many people who gave me new ideas and helped me in
areas of mathematics I am not so familiar with. First of all my colleague KRISTIAN BREDIEShelped me
a lot with functional analysis, especially function spaces, and pseudo inverses. GÜNTHER ROTE gave me
hints for tackling the determinant factorisation, FABIAN WIRTH pointed me to resultants, HANS TRIEBEL

assisted with embedding of smoothness spaces, ROBERT STRICH helped me expressing some of my results
in terms of group theory, THORSTEN RAASCH introduced me how to use wavelets for solving partial
differential equations, and this list is certainly not complete. Last but not least I am grateful to the careful
proof readers, especially KRISTIAN BREDIES.

1.2 Notations

In this section we will introduce and discuss several notations that are used throughout the document.

1.2.1 Some notes about notations

Much like natural languages the mathematical notation evolves over the time, new symbols appear, the
meaning of some symbols changes, or a notation becomes uncommon. While natural languages are well
studied there seems to be only low effort in studying mathematical notation. Finding good mathematical
notations is like modelling real-world problems with mathematics. Like problem modelling, mathematical
notation could be a mathematical area of its own. [Caj93]

There is a lot of common abuse of notation around and even notations that are commonly accepted are
not always satisfying. But what is abuse if nobody is authorised to tell what the right use is? Without a
broadly accepted guide of the right notation it seems to be nonsensical to discuss abuse. Nevertheless this
discussion is worthwhile because there are notation requirements that probably everyone accepts in general
– as long as there are no conflicts with a special notation one is familiar with. It is not easy to formulate
these demands in a precise, orthogonal (i.e. axiomatic) but comprehensible style, so we are content with
some examples illustrating why particular notations should be favoured over others.

Since wavelet analysis is part ofFunctional Analysisa central matter of this area are functions, func-
tions of functions (so-called operators) and so on. In this area it is often necessary to define functions. A
clean way to do this is to define a function pointwise, just likef(x) = x+2. But it is often inconvenient to
introduce a new identifier for a function that is used only once. So there are several notations to construct
a function without a name, the most prominent ones are certainlyx 7→ x+ 2 and·+ 2.

The dot can be used for showing that some arguments of a function call are omitted, i.e. we have still a
function in the omitted arguments. This notation is useful for readability since one can denote the absolute
value function by|·| whereas|| could be mixed up with the sign for parallelism or with norm bars. But the
extension of the dot notation to more complex expressions such asf(· − t) has various disadvantages:

1. Using the dot you cannot easily express a constant function, e.g.x 7→ 2.
2. The dot notation does not allow for multiple argument functions like(x, y) 7→ x2 + y2.
3. To say what belongs to the function you need to declare the scope of the dot expression. There is

no such generally accepted notation for the scope and thus the expressions are ambiguous. E.g. it is
not known whetherg(f(·)) means
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• x 7→ g(f(x)), i.e.g ◦ f ,
• g(x 7→ f(x)), i.e.g(f) or even
• g(f(x 7→ x)), i.e.g(f(id))

That is why in this document we avoid the dot notation and stick to the arrow notation (also known as
ALONZO CHURCH’s lambdanotation). Indeed the latter one is used much less in the area this work
belongs to, but we share the negative attitude of Dijkstra with respect to justifications like “The paper is
addressed to the XYZ community, which habitually expresses itself in that style, deviation from which
would result in failure to reach his intended audience.” [Dij86a].

Sometimes it is argued that abuse in notation makes expressions shorter and thus easier to read. In
general it is true that disregarding some writing rules extends the set of possible character strings to ex-
press a formula and thus allows to choose a quite short one. But there are also lots of complications by
misunderstood formalisms, just like the not so uncommon expressionf(·) which is actually equivalent to
f .

We do not only want to get rid of some unfavourable notations, we also want to introduce some new
notations. These are largely inspired byfunctional programming[Hug84, Dau04], which focuses on the
notion of afunction.

A function is some black box which maps certain input values (arguments) to output values (function
values). The output only depends on the input, the function cannot maintain astate. The result of the
function may be undefined for some arguments. In other words, functions need not to betotal, they are
in generalpartial. Many works on functional analysis are based on equivalence classes of functions with
respect to the “equal almost everywhere” relation

a.e.= . They identify a function with the corresponding
equivalence class. But assigning an argument to a unique function value is such an essential property of
functions that we do not want to lose it. So, in this respect we follow books like [EG92]. Strictly spoken,
due to this interpretation we do not have function norms but only semi-norms because‖f‖ = 0 merely
means thatf is zero almost everywhere.

Functions can have functions both as arguments and as results. These so-calledhigher order functions
are known asoperators or functionals to the functional analysis community. It seems comfortable not to
use the restrictive schemef : A → B to tell that a function maps from setA to setB, but to interpret
A → B as the set of all functions mapping fromA to B. Thus we can writef ∈ A → B. Using
this interpretation we can easily formulate, e.g. , that the differentiation operatorD for real functions is a
(obviously not total) function withD ∈ (R→ R)→ (R→ R).

We want to provide adeclarative styleto make clear what we actually mean rather than letting the
meaning result from what we say. The functional notation helps to achieve this goal. E.g. , if you are famil-
iar with the arrow notation, you will probably agree that the expression(ψ ↑ b)→ amakes unambiguously
clear that we want to dilate the functionψ by a factor ofb and then move it by a distance ofa to the right.
It is not the intuitive use of arrows that makes things clear, but it is the fact that the arrow operators process
functions rather than function values. Dilation and translation operatorsDa andT b like in [LMR97] share
this spirit.

In contrast to that, the usual notationψ
(
t−a
b

)
denotes a function value. If one wants to interpret it as

an expression describing a function it is not sure which of the variablesa, b, t shall vary and which are
constant. The reader needs some time to analyse whether the expression describes a dilation or a shrinking
(in time direction), a translation to the right or to the left. He also needs some time to detect the order of
translation and dilation. By converting each operation inside the argument into the corresponding operation
of the function we can show the equivalence of both expressions.

ψ

(
t − a

b

)
= (ψ ↑ b) (t − a)

=
(
(ψ ↑ b)→ a

)
(t)

Writing an expression with functions rather than function values is known as thepoint-free style.
A similar example relates to filter masks (cf. Definition1.2.1). It is common to consider a filter mask as

a polynomial, thus writingh(z). If one wants to shift the filter mask by one step, this is commonly denoted
by z · h(z). But strictly spokenz · h(z) is a complex number. You can apply a lot of operations to complex
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numbers, but not each of them can be expressed in terms of operations to filter masks. For instance you
can write

∣∣h(z)∣∣2 but then you leave it open whether that still represents a filter, i.e. whether it is always

possible to find a filterg for which ∀z
∣∣h(z)∣∣2 = g(z) holds. Actually for

∣∣h(z)∣∣ this is not possible in
general.

Another argument for the point-free style is that some common filter operations cannot be expressed
as functions of evaluated polynomials. Up-sampling is an example but it can be expressed with a modified
argument to the polynomial function. E.g.h is g up-sampled if∀z h(z) = g(z2). The down-sampling
operation is more difficult. Down-sampling means removing all odd-indexed elements of a sequence.
In the traditional style we had to say that the filterh is the down-sampled version ofg if 2 · h(z2) =
g(z) + g(−z). For a down-sampling by factor3 this would be even more complicated:3 · h(z3) =
g(z) + g(z · ei·2·π/3) + g(z · ei·4·π/3). Alternatively with trigonometric polynomial functions we would
describe it with2 · ĥ(2 ·ω) = ĝ(ω)+ ĝ(ω+π). This way down-sampling can only be written implicitly: “h
is g down-sampled, if a specific relation betweenh andg holds.” It is not even obvious whether the relation
is unique, that is whether there is only one down-sampling for everyg. We want to make that explicit, we
want a symbolic analogon to “g down-sampled”. Therefore we will simply writeh = g � 2. The sign�
denotes an infix operator just like+. A very similar notation was already used in [Str96, DS98].

The overall consequence is that we will define and use operations on filter masks, rather than describing
their effect on polynomial function values. The properties in Lemma1.2.2will help to manipulate expres-
sions containing this operation. Admittedly some of them are trivial when treating filters like evaluated
polynomial functions, but a few properties are really novel.

Let us summarise the pros and cons of extensive use of operations in the spatial domain instead of
operations in the frequency space for real functions.

Advantages:

• The FOURIER transform is not defined for all functions fromR → R and for all sequences from
Z → R, and it is defined depending on the subsets. That is functions fromL2 (R) need a FOURIER

transform definition different from that for functions fromL1 (R). It is even harder to design a
universal transform and thus it is reasonable to avoid the transform where not really necessary.

• The convolution of two functions is defined in the spatial domain. It can be simplified when consid-
ering the frequency spectrum of the functions: Convolving two functions means multiplying their
frequency spectra pointwise. But this equivalence can only be used if the FOURIER transform can
be applied to both operands. For instance the identity function fromR → R is not contained in
common spaces compatible with the FOURIER transform likeL1 (R) andL2 (R). A convolution
with a finitely supported function, for instance the convolutionχ[−1,1] ∗ id, poses no problem in the
spatial domain. The result is obviously2 · id.

Disadvantages:

• There is no function fromR → R which is neutral with respect to convolution. Approaches like
distributions or Non-Standard Analysis[LR94] can resolve this problem. But they are quite com-
plicated. In the frequency space there is no problem since the function which is constantly1 (i.e.
ξ 7→ 1) is neutral with respect to pointwise multiplication. Thus it is hard to find a setting with a
neutral element for convolution but it is easy to tell the frequency spectrum of that element.

• For many proofs we need associativity of the convolution. In the FOURIER domain convolution
becomes multiplication. Multiplication is associative, so forL2 (R) functions convolution is asso-
ciative. But a simple criterion for associativity is not obvious.

Consequently, conforming to a basic rule of good mathematical style [Dij86b] “Only introduce identi-
fiers you need” we want to writeg(z) andϕ̂(ξ) only if we really want to state something about the function
values. Extending this wish for simplicity we want to apply the FOURIER transform only if needed. That
is we writeϕ ∗ ψ instead ofϕ̂ · ψ̂ wherever possible. Since the dot like inϕ · ψ is commonly associated
with the point-wise multiplication of functions we avoid using it for convolution, also for discrete signals.
Because of the usage of∗ instead of· it is probably better to use adapted notations for multiplication related
operations like power, product, matrix multiplication, and determinant.

In functional programming a feature namedcurrying is quite popular. It is in honour of the logician
HASKELL CURRY although SCHÖNFINKEL was the one who first described this idea [Tho99]. It means
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that a function with more than one argument is defined by a higher order function. We can define

f ∈ R× R→ R
f(x, y) = x+ y

which is the un-curried form. But the curried form

f ∈ R→ R→ R
f(x)(y) = x+ y

is an equivalent yet different definition. The curried definition allows us to omit the second argument. This
is certainly not worth a new term in mathematics but in the area of computer languages this method is re-
stricted to languages providing higher order functions. So, in computer science the termpartial application
was introduced.

Operators (i.e. functions which map functions to functions) are naturally in curried form. That is we
write Df(x) (meaning(Df)(x)) instead ofD(f, x) for the derivative off evaluated atx. The partial
applied form isDf and it denotes the derivative off .

It is convenient to use partial application for infix operators, too, where it is calledsection. We allow
notations like(x+) and(+x) for the functionsy 7→ x+ y andy 7→ y + x, respectively. For example, the
composition(·y) ◦ (x+) meansz 7→ (x+ z) · y.

There are very different notations for function application. Sometimes arguments are written without
parentheses, e.g. for standard functions and operators like insinx andDf , respectively, sometimes argu-
ments are enclosed in parentheses, e.g. for custom functions, sayf(x) instead off x , sometimes arguments
are written as subscript as for tuples, sequences, parametrised functions or families of functions, e.g.xi, fα.
We stick to the traditional notations here in many cases, but we want to interpret these objects uniformly as
functions. For sequences this means that we treat them as functions of integer variables. The notationAn

is equivalent to{1, . . . , n} → A andAn×m is equivalent to({1, . . . , n} × {1, . . . ,m})→ A. This allows
us to writef ◦ x if we want to apply the functionf to all elements of the sequencex.

Function application is left associative.

f(x)(y) = (f(x))(y)

This implies thatABx is different fromA(Bx), more precisely

ABx = (AB)x
A(Bx) = (A ◦B)x

In contrast to that, function set construction notation (the “→” operator) shall be right associative. That is
A→ B → C meansA→ (B → C). This complements the left associativity of function application since
if f ∈ A→ B → C andx ∈ A thenf(x) ∈ B → C.

1.2.2 Operators and basic properties

We will deal with several types of objects: Two basic types are discrete signals (sequences) and continuous
signals (real functions). We will define several operations for them in the following paragraphs.

Discrete signals

1.2.1 Definition (Discrete signal, discrete filter, sequence).A functionh from Z→ R is called adiscrete
real signal. Analogously a functionh from Z → C is called adiscrete complex signal. A function
or sequenceh from `0 (Z) is called afinitely supported discrete signal, that is, only a finite number of
coefficients are not zero. We will define a special frequently used signal and some operations that can be
applied to discrete signals.
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Neutral element δ = (. . . , 0, 0,1, 0, 0, . . . )

of convolution ∀k ∈ Z δk =

1 : k = 0
0 : k 6= 0

Component selection hk

Negation ∀k ∈ Z (−h)k = −hk
Alternating negation ∀k ∈ Z (h−)k = (−1)k · hk
Adjoint ∀k ∈ Z h∗k = h−k

Translation ∀ {k, c} ⊂ Z (h→ c)k = hk−c

∀ {k, c} ⊂ Z (h← c)k = hk+c

Down-sampling ∀ {k, c} ⊂ Z (h � c)k = hc·k

Up-sampling ∀ {k, c} ⊂ Z (h ↑ c)k =
∑

j:k=c·j

hj

=

hk/c : k ≡ 0 mod c
0 : k 6≡ 0 mod c

Addition ∀k ∈ Z (h+ g)k = hk + gk

Index interval ixh = {minA, . . . ,maxA}
(Convex hull of support) withA = {k : hk 6= 0}
Set sum A+B =

{
x+ y : (x, y) ∈ A×B

}
Sum

∑
h =

∑
j∈Z

hj

Scalar product 〈h, g〉 =
∑
j∈Z

hj · gj

Norm ‖h‖p = p

√∑
j∈Z

∣∣hj∣∣p
‖h‖∞ = sup

j∈Z

∣∣hj∣∣
‖h‖2 =

√
〈h, h〉

FOURIER transform
ĥ ∈ R→ C

∀ω ∈ R ĥ(ω) =
∑
j∈Z

hj · e−i·ω·j

Convolution ∀k ∈ Z (h ∗ g)k =
∑
j∈Z

hj · gk−j

=
〈
h, g∗ → k

〉
Deconvolution h = (h /∗ g) ∗ g
Convolution power h∗0 = δ

∀k ∈ Z h∗k+1 = h ∗ h∗k
Matrix-vector-convolution
A ∈ `0 (Z)n×m ∧
b ∈ `0 (Z)m

∀k ∈ {1, . . . , n} (A~ b)k =
∑

l∈{1,...,m}

Ak,l ∗ bl

Matrix-matrix-convolution
A ∈ `0 (Z)n×m ∧
B ∈ `0 (Z)m×r

∀k ∈ {1, . . . , n}
∀j ∈ {1, . . . , r} (A~B)k,j =

∑
l∈{1,...,m}

Ak,l ∗Bl,j

• A signal will be written with the usual tuple notation, where the value at index zero is highlighted
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with bold typeset, like this:

h =
(
. . . , h−2, h−1,h0, h1, h2, . . .

)
Values not written are zero.

• ĥ is called thesymbolof h or thetrigonometric polynomial functionassociated withh.
• We use a special arrow for down-sampling (h � c instead ofh ↓ c) to make clear that this operation

cannot be reversed in general.

There are some basic properties that we will use throughout the document without always emphasising
when we do it.

1.2.2 Lemma. Let h, g, andm be discrete signals, and letj and k be integers. Then the following
connections hold.

δ ∗ h = h neutral element of convolution

g ∗ h = h ∗ g commutativity of convolution

(g ∗ h) ∗m = g ∗ (h ∗m) associativity of convolution

(g ∗ h)→ k = g ∗ (h → k) translation is a kind of convolution

(h ↑ k) � k = h invertibility of up-sampling (1.2.1)

(h ↑ k) ↑ j = h ↑ (k · j ) associativity of up-sampling

(h � k) � j = h � (k · j ) associativity of down-sampling

(g + h) ↑ k = (g ↑ k) + (h ↑ k) distributivity of up-sampling with respect to addition

(g + h) � k = (g � k) + (h � k) distributivity of down-sampling with respect to addition

(g ∗ h) ↑ k = (g ↑ k) ∗ (h ↑ k) distributivity of up-sampling with respect to convolution

(g ↑ k ∗ h) � k = g ∗ (h � k) kind of distributivity for down-sampling (1.2.2)(
(h ↑ k)→ j

)
� k =

h →
(

j
k

)
: k | j

0 : else
commutation of translation and down-sampling(1.2.3)

ix (g ∗ h) = ix g + ix h index interval of convoluted signals(
h−
)
− = h inversion of sign alternation

(g ∗ h)− = g− ∗ h− alternation is distributive with respect to convolution(
h∗n
)
− =

(
h−
)∗n

alternation commutes with powers

(h → k)− = (−1)k · h− → k alternation of translated signals

〈g ↑ k , h ↑ k〉 = 〈g , h〉 scalar product is invariant under up-sampling

‖h ↑ k‖p = ‖h‖p p-norms are invariant under up-sampling

δ̂ (ω) = 1 FOURIER transform of the unit impulse

ĥ∗ = ĥ FOURIER transform of the adjoint

ĥ ↑ k = ĥ ↓ k FOURIER transform of an upsampled signal

ĥ → k (ω) = ĥ (ω) · e−i·k ·ω FOURIER transform of a translated signal

ĥ ∗ g = ĥ · ĝ FOURIER transform is a homomorphism
mapping convolution to multiplication

1.2.3 Remark.The identity (1.2.2) is an exception due to its asymmetry. The problem is that the distribu-
tivity with respect to down-sampling, that is(g ∗ h) � k = (g � k) ∗ (h � k), does not hold in general.

1.2.4 Definition (Polynomial, Series).A polynomialis a tuple fromN0 → R, a LAURENT polynomialis
a tuple fromZ→ R (i.e. functions with a finite number of non-zero values) where(R, 0, 1,+, ·) is a ring.
A seriesis also a sequence fromN0 → R or Z→ R, respectively, but with no restriction to the number of
non-zero values.
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Both (N0 → R, (0), (1),+, ∗) and(Z → R, (0) , δ,+, ∗) are rings. With this definition a polynomial
is a function which maps indices to coefficients. Actually this algebraic view on polynomials cancels the
difference between polynomials and signals.

It is popular to compute weighted sums of powers using polynomials, actually many people refer to
these power sums as polynomials. For both kinds of polynomials we introduce the “evaluator”E from
(J → R)→ (R→ R) with the index setJ which is eitherN0 or Z

Ep (z) =
∑
j∈J

pj · zj [Str98, Definition 1.34].

The evaluator maps a polynomial to apolynomial function(alsoentire rational functionor integral rational
function).

Although we will mostly use the point-free style, some properties will convince the reader easier if
evaluated polynomial functions are used instead of polynomials. The following properties hold. The first
two justify that for everyz the functionh 7→ Eh (z) is called theevaluation homomorphism(German:
Einsetzungshomomorphismus).

1.2.5 Lemma.

E (h+ g) (z) = Eh (z) + Eg (z) homomorphism with respect to polynomial+ and scalar+
E (h ∗ g) (z) = Eh (z) · Eg (z) homomorphism with respect to∗ and· (1.2.4)

E
(
h−
)
(z) = Eh (−z) alternating signs of the coefficients

E (h ↑ k) (z) = Eh
(
zk
)

up-sampling of signals

E (h→ k) (z) = Eh (z) · zk translation of signals

ĥ(ω) = Eh
(
e−i·ω

)
FOURIER transform

Given the pointwise sum and product of functions the evaluator is itself a homomorphism because
E(h+ g) = Eh+ Eg andE(h ∗ g) = Eh · Eg.

1.2.6 Definition (Degree of a Polynomial).The degree of a polynomialis a measure for the number of
non-zero coefficients of a polynomial.

deg ∈ (J → R)→ (N0 ∪ {−∞})

For a polynomialp from N0 → R the degree is the highest index of non-zero coefficients. If all coefficients
are zero the degree is negative infinity. (Given an appropriate extension of the set of integers.)

deg p = max
{
j : pj 6= 0

}
For a LAURENT polynomialp from Z → R the degree is the difference between maximum and minimum
index of non-zero coefficients. If all coefficients are zero the degree is negative infinity, again.

deg p = max
{
j : pj 6= 0

}
−min

{
j : pj 6= 0

}
1.2.7 Lemma. For polynomialsp andq it holds

deg(p ∗ q) = deg p+ deg q .

Continuous signals

1.2.8 Definition (Continuous signal, real function). A function ϕ from R → R is called acontinuous
real signal. Following operations can be applied:
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Evaluation ϕ(t)
Negation ∀t ∈ R (−ϕ)(t) = −ϕ(t)
Addition ∀t ∈ R (ϕ+ ψ)(t) = ϕ(t) + ψ(t)
Scalar multiplication ∀ {t, c} ⊂ R (c · ϕ)(t) = c · ϕ(t)
Multiplication ∀t ∈ R (ϕ · ψ)(t) = ϕ(t) · ψ(t)
Absolute value ∀t ∈ R |ϕ| (t) =

∣∣ϕ(t)
∣∣

Power ∀t ∈ R ϕ2(t) = ϕ(t)2

Adjoint ∀t ∈ R ϕ∗(t) = ϕ(−t)
ϕ∗ = ϕ ↑ (−1)

Translation ∀ {t, c} ⊂ R (ϕ→ c)(t) = ϕ(t− c)
∀ {t, c} ⊂ R (ϕ← c)(t) = ϕ(t+ c)

Dilation ∀ {t, c} ⊂ R (ϕ ↑ c)(t) = ϕ

(
t

c

)
∀ {t, c} ⊂ R (ϕ ↓ c)(t) = ϕ (c · t)

∀c ∈ R ϕ ↓ c = ϕ ◦ (c·)
Tensor product ∀(t, s) ∈ R2 (ϕ⊗ ψ)(t, s) = ϕ(t) · ψ(s)

Integral∫
∈ P (R)→ (R→ A)→ A

ϕ
a.e.=

(
t 7→

∫
(0,t)

ϕ

)′
Scalar product 〈ϕ,ψ〉 =

∫
R

(
ϕ · ψ

)
Norm ‖ϕ‖p = p

√∫
R

(
τ 7→

∣∣ϕ(τ)
∣∣p)

‖ϕ‖∞ = esssup
τ∈R

∣∣ϕ(τ)
∣∣

‖ϕ‖2 =
√
〈ϕ,ϕ〉

Convolution ∀t ∈ R (ϕ ∗ ψ)(t) =
∫

R

(
τ 7→ ϕ(τ) · ψ(t− τ)

)
∀t ∈ R (ϕ ∗ ψ)(t) =

〈
ϕ,ψ∗ → t

〉
FOURIER transform
ϕ̂ ∈ R→ C ∀ω ∈ R ϕ̂(ω) =

1√
2 · π

·
〈
ϕ, t 7→ ei·ω·t

〉
Fϕ = ϕ̂

Similar to the operations on discrete signals we want to state corresponding properties for continuous
signals.

1.2.9 Lemma. Let ϕ andψ be continuous signals, and letc andd be non-zero real numbers, and letp be
a positive real number. Then the following connections hold.

ϕ ↓ c = ϕ ↑
(

1
c

)
shrinking expressed in terms of dilation

(ϕ ↑ c) ↓ c = ϕ invertibility of dilation

(ϕ ↑ c) ↑ d = ϕ ↑ (c · d) associativity of dilation

(ϕ ↓ c) ↓ d = ϕ ↓ (c · d) associativity of shrinking

〈ψ ↑ c, ϕ ↑ c〉 = |c| · 〈ψ,ϕ〉 distributivity of dilation with respect to the inner product

‖ϕ ↑ c‖p = p
√
|c| · ‖ϕ‖p commutation of dilation and norm

|c| · (ψ ∗ ϕ) ↑ c = (ψ ↑ c) ∗ (ϕ ↑ c) distributivity of dilation with respect to convolution

(ψ ∗ ϕ) ↓ c = |c| · (ψ ↓ c) ∗ (ϕ ↓ c) distributivity of shrinking with respect to convolution(1.2.5)
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‖ϕ̂‖2 = ‖ϕ‖2 the FOURIER transform is anisometry〈
ϕ̂, ψ̂

〉
= 〈ϕ,ψ〉 the FOURIER transform isunitary

√
2 · π · ϕ a.e.= t 7→

〈
ϕ̂, ω 7→ e−i·t·ω

〉
inverse of the FOURIER transform̂̂ϕ a.e.= ϕ ↑ −1 duplicate FOURIER transform flips the signal

ϕ̂∗ = ϕ̂ FOURIER transform of the adjoint

ϕ̂ ↑ c = |c| · ϕ̂ ↓ c FOURIER transform of dilated function

ϕ̂→ k (ω) = ϕ̂ (ω) · e−i·k ·ω FOURIER transform of translated function

ϕ̂ ∗ ψ =
√

2 · π · ϕ̂ · ψ̂ FOURIER transform is almost a homomorphism

mapping convolution to multiplication

ϕ̂′(ω) = i · ω · ϕ̂(ω) FOURIER transform of the derivative

ϕ̂′ = F(ω 7→ −i · ω · ϕ(ω)) FOURIER transform of the function with linear multiplier

F
(
t 7→ e−t

2/2
)

= ω 7→ e−ω
2/2 The GAUSSian is an eigenfunction of the FOURIER transform

Discrete and Continuous signals mixed

We also need operations that connect discrete and continuous signals.

1.2.10 Definition.

Mixed convolution h ∗ ϕ =
∑
j∈Z

hj · (ϕ→ j)

∀t ∈ R (h ∗ ϕ)(t) =
∑
j∈Z

hj · ϕ(t− j)

discretisation operatorQ
Q ∈ (R→ A)→ (Z→ A) ∀j ∈ Z (Qf)j = f(j)

1.2.11 Lemma.For each sequenceh and each functionϕ holds

Q(h ∗ ϕ) = h ∗Qϕ .

• We allow convolution of discrete signals with continuous signals. In this case a discrete signalh
behaves just like a linear combination of translated DIRAC impulses (δ).∑

k∈Z
hk · (δ → k)

• The termh ∗ ϕ, whereh is a discrete signal andϕ is a continuous one with small support, can
also be considered as composing the shape ofh with shifted versions ofϕ. More precisely, ifϕ is
interpolating (Qϕ = δ) thenh ∗ ϕ interpolatesh. This can be considered as an inversion of the
discretisation in the sense

Q(h ∗ ϕ) = h .

This connection is a simple consequence of Lemma1.2.11above.

Precedences

The following tables give the precedences of the used infix operators in the order of decreasing precedence.
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• Arithmetic

xy, x∗n right associative

x ↑ 2, x � 2, ϕ ↑ 2, ϕ ↓ 2, f ◦ g left associative

ϕ/ψ, ϕ · ψ left associative

ϕ ∗ ψ,ϕ← k, ϕ→ j left associative

ϕ+ ψ,ϕ− ψ left associative

x 7→ f(x) right associative

• Set operations

× left associative

∪,∩ left associative

→ right associative

∈,⊂,⊃,⊆,⊇

Adjoint operators

1.2.12 Definition (Adjoint). Given two HILBERT spacesA andB and a linear operatorT fromA → B,
then theadjoint operatorT ∗ fromB → A is the one for which holds

∀x ∈ A ∀y ∈ B 〈Tx, y〉B =
〈
x, T ∗y

〉
A

.

The adjoint is a generalisation of the transposition of a matrix to complex numbers and linear operators in
arbitrary vector spaces.

1.2.13 Lemma.Some laws for computations involving the adjoint in HILBERT spaces such asL2 (R) and
`2 (Z).

f∗∗ = f adjoining twice is the identity

f−1∗ = f∗−1 adjoining and inversion commute

(g ◦ f)∗ = f∗ ◦ g∗ adjoint of composition of linear functions

(∗h)∗ =
(
∗h∗
)

adjoint of the discrete convolution

(∗ϕ)∗ =
(
∗ϕ∗

)
adjoint of the continuous convolution

(∗ϕ)∗ = Q ◦
(
∗ϕ∗

)
adjoint of the mixed convolution

(↑ k)∗ = (� k) adjoint of up-sampling

(↑ k)∗ = (↓ k) ◦ (·k) adjoint of dilation

(·ϕ)∗ = 〈, ϕ〉 adjoint of weighting, adjoint of inner product

Because(∗h∗) is the adjoint operator of(∗h) we also callh∗ the adjoint filter ofh.

Discrete mathematics

1.2.14 Definition (Residue class).Let (R, 0, 1,+, ·) be a ring and{j, k} ⊆ R. With [j]k we denote the
residue classwith respect to the divisork which contains the representativej.

[j]k =
{
i : k | (i− j)

}
Roughly spoken[j]k is the set of all ring elements that share the remainder of the division ofj by k. But
the definition above is more general because the ring need not to provide a division with unique remainder.
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Chapter 2

From continuous to discrete wavelets

This chapter introduces the basics of continuous and discrete wavelet transforms which can be found in
standard wavelet literature such as [Mal99, Dau92, LMR97]. We do not present new results here, but we
want to give an overview over important facts and their proofs. It may also help to become familiar with
the notation. The chapter is finished by a survey of some variants of the standard wavelet transforms.

2.1 Continuous wavelet transform

2.1.1 What we are looking for

We want to design a transformationW∗ withW∗ ∈ (R→ C)→ (R→ R→ C) which reveals some struc-
tures of a signal that cannot be immediately seen when looking at it. Intuitively we have some expectations
to such a transformation.

1. If a signal is amplified by a factorc, then we expect that the transformation of this signal also
becomes amplified byc.

2. If two signals are superposed, then the transformation of the superposition shall be the superposition
of the separate transformations of these signals.

3. If the signal is delayed for some time, then its transformation is delayed for the same amount of
time.

The first two claims are summarised with the termlinearity, whereas the latter one is calledtime-
invariance. Their mathematical descriptions can be derived from the above naive description in a straight-
forward way (cf. Figure2.1).

Linearity: amplification ∀c∀f W∗(c · f) = c ·W∗f

Linearity: superposition ∀f∀g W∗(f + g) = W∗f +W∗g

Time invariance ∀t∀f W∗(f → t) = W∗f → t

From these claims it already follows thatW∗ must be some sort ofconvolution. We have even more claims
for the transformationW∗ concerning the composition and decomposition of a signalf .

Composition We want to compose a signal from wavelet functions, which can vary in their position
and in their scale. That is, we have a wavelet functionψ and want to compose our signal by superposing
functions from{ψ ↑ a→ b : a ∈ R>0 ∧ b ∈ R}. The weighting factors for all of these functions constitute
a two-dimensional representation, in contrast to the signal which is only one-dimensional.

Let Wψ be the transform (Wψ ∈ (R→ R→ C) → (R→ C)) which synthesises a one-dimensional
signal from a two-dimensional wavelet representation, sayg. If g has the valuec at the timeb and the
scalea (i.e. g(a)(b) = c), then we expect that the represented signalWψg contains a wavelet at this time
and this scale with amplitudec (see Figure2.2).

19
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Figure 2.1: Three axioms of linear translation invariant operators covering: commutation of the
operator with amplification, distribution of the operator over sums, commutation of the operator
with translation. The left column shows the signalf , the right column shows the corresponding
wavelet transformW∗f .
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Figure 2.2: The meaning of wavelet coefficients. The left plot visualises the wavelet domain
and the right plot shows the spatial domain. Both plots show different representations of the
same signal. A wavelet transformed signal is a function of two arguments. The box of the plot
is the function domain, the grey colours represent the function values: White is 0 and black is 1.
The horizontal position is the time point of the occurrence of a wavelet, the vertical position is
the scale of the wavelet, with large scales at the bottom, and the darkness of a dot represents the
amplitude of the corresponding wavelet.
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Because of the required linearityWψ is already determined.

(Wψg)(t) =
∫

R>0

a 7→ ∫
R

b 7→ g(a)(b) ·

(
ψ ↑ a√
a
→ b

)
(t)




In the above formula we collect all dilated and translated versions of the waveletψ. Each version of the
wavelet is amplified with the corresponding coefficientg(a)(b). We have normalisedψ ↑ a by

√
a in order

to assert the sameL2 (R) norm for each dilation ofψ, that is
∥∥∥ψ↑a√

a

∥∥∥
2

= ‖ψ‖2. This normalisation ensures

symmetry with the decomposition transform below.

We compute the composed signal point-wise, that is we compute(Wψg)(t) rather thanWψg. This is a
must since we do not want to worry about integrals of functional values. Consequently we take the value at
time t of each version of the wavelet and integrate over the values that all versions of the wavelet contribute
to this point.

Decomposition A reasonable design of a decomposition transformation is not as obvious as the compo-
sition transformation. But the following observation leads to a good decomposition strategy.

2.1.1 Lemma (CAUCHY-SCHWARZ inequality). The value of the scalar product is always bounded by the
norms of the operands.

∀ {f, g} ⊂ L2 (R)
∣∣〈f, g〉∣∣ ≤ ‖f‖2 · ‖g‖2

The magnitude of the scalar product meets the product of the norms of its operands if and only if the
operands arecollinear, that is one operand is the weighted version of the other one.

∣∣〈f, g〉∣∣ = ‖f‖2 · ‖g‖2 ⇔ ∃λ f
a.e.= λ · g ∨ g a.e.= (t 7→ 0)

If one has a fixedg and considers a set of normalised functionsf (‖f‖2 = 1), then the scalar product
〈f, g〉 is maximal iff has the same shape asg. If ‖g‖2 = 1 then〈f, g〉 · g is the projection off into the
linear space spanned byg, that is the scalar product is the weight ofg with which it is contained inf .

Given these properties of the scalar product it is certainly a good idea to define the wavelet analysis
transform by scalar products of the signal with the dilated and translated versions of the waveletψ.

(Wψ
∗f)(a)(b) =

〈
f,
ψ ↑ a√
a
→ b

〉

For general patternsψ the decomposed signal does not look as smooth and clear as Figure2.1suggests.
However for a special wavelet, namely the MORLET wavelet (Figure2.4), which looks like a spring (more
precisely: ahelix), the effect applies, that rotation of a spring can be hardly distinguished from translation.
This is the reason why shifting the MORLET wavelet along the signal changes mainly the complex phase
of the correlation coefficient but influences much less its absolute value. This leads to the smooth shape of
the absolute values shown in Figure2.3.

Note that the use of the adjoint notationWψ
∗ is intended. Indeed the decomposition transformWψ

∗ is
formally the adjoint ofWψ with respect toL2 (R) andL2

(
R2
)
. We still have to check howWψ

∗ is related
to the inverse ofWψ.
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2.1.2 Inversion formula and admissibility

Now we want to see what conditions must be fulfilled in order to useWψ for invertingWψ
∗. According to

the definition of the convolution we can rewrite both transformations more concisely.

(Wψ
∗f)(a) = f ∗

(
ψ ↑ a√
a

)∗
= f ∗ ψ

∗ ↑ a√
a

(2.1.1)

(Wψg)(t) =
∫

R>0

a 7→ ∫
R

b 7→ g(a)(b) ·

(
ψ ↑ a√
a
→ b

)
(t)




=
∫

R>0

a 7→ ∫
R

b 7→ g(a)(b) ·

(
ψ ↑ a√
a

)
(t− b)




=
∫

R>0

a 7→ (
g (a) ∗ ψ ↑ a√

a

)
(t)

 (2.1.2)

We clearly see that both transformations are essentially based on convolutions. Now we plug them
together by settingg(a) = w(a) · (Wψ

∗f)(a), wherew(a) is a scale dependent weighting. This weighting
can also be interpreted as a weighting of the measure in the wavelet space. That is if we do not consider
L2

(
R2
)

but a space where the measure is weighted depending on the scale then the adjoint of the wavelet
decomposition transform with respect to this inhomogeneous space is actually the composition transform.

We will determinew(a) such that the transformation inverts the analysis transformationWψ
∗.

(
Wψ(w ·Wψ

∗f)
)
(t) =

∫
R>0

a 7→ (
w(a) · f ∗ ψ

∗ ↑ a√
a
∗ ψ ↑ a√

a

)
(t)


=
∫

R>0

(
a 7→ w(a) ·

(
f ∗
(
ψ∗ ∗ ψ

)
↑ a
)

(t)
)

(2.1.3)

Structurally, the convolution commutes with the integration. However integrability issues let this con-
nection fail sometimes.

Wψ

(
w ·Wψ

∗f
)

= f ∗

(
t 7→

∫
R>0

(
a 7→ w(a) ·

(
(ψ∗ ∗ ψ) ↑ a

)
(t)
))

Thus going through wavelet analysis and subsequent synthesis is in total a convolution. To get perfect
reconstruction (i.e.∀f Wψ

(
w ·Wψ

∗f
) a.e.= f ) we need to convolvef with the neutral element of the

convolution. Unfortunately there is no function which is neutral with respect to convolution. One can
only imagine a strange function called the DIRAC impulse which is zero everywhere except for argument
zero. For argument zero it is infinite and the kind of infinity is adjusted such that the integral of the DIRAC

impulse is one. Since the DIRAC impulse is not a function fromR→ R, we cannot use an approach where
the right operand of the convolution is made equivalent to the DIRAC impulse. We could show that the
superposition of all(ψ∗ ∗ ψ) ↑ a vanishes everywhere except at point zero, if we guess the weighting
properly andψ has a vanishing moment. Maybe Non-Standard Analysis is a way out here ([LR94]) since
it provides infinitesimal small and large numbers.

It is certainly better to go a different way. The trick to derive the conditions onw andψ is to switch
to the FOURIER domain where the convolution turns into a multiplication. The neutral element of the
multiplication of functions is obviously the function which is constant one.
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F
(
Wψ(w ·Wψ

∗f)
)

= F

(
t 7→

∫
R>0

(
a 7→ w(a) ·

(
f ∗ (ψ∗ ∗ ψ) ↑ a

)
(t)
))

= ω 7→
∫

R>0

(
a 7→ F

(
w(a) · f ∗

(
ψ∗ ∗ ψ

)
↑ a
)
(ω)
)

= ω 7→
∫

R>0

(
a 7→ w(a) · a ·

(
2 · π · f̂ ·

(
ψ̂∗ · ψ̂

)
↓ a
)

(ω)

)

= 2 · π · f̂ ·

ω 7→ ∫
R>0

(
a 7→ w(a) · a ·

(∣∣∣ψ̂∣∣∣2 ↓ a) (ω)

)
This means, in order to getF

(
Wψ(w ·Wψ

∗f)
)

= f̂ we have to make the right operand of the multiplica-
tion a function that is constant12·π .

ω 7→
∫

R>0

(
a 7→ w(a) · a ·

∣∣∣∣(ψ̂ ↓ a) (ω)
∣∣∣∣2
)

= ω 7→
∫

R>0

(
a 7→ w(a) · a ·

∣∣∣ψ̂(a · ω)
∣∣∣2)

Substituteα = a · ω.

= ω 7→
∫

R>0

(
α 7→ 1

ω
· w
(
α

ω

)
· α
ω
·
∣∣∣ψ̂(α)

∣∣∣2)
To make the overall function (with respect toω) constant, it must bew(a) = 1

cψ·a2 for some constantcψ.

= ω 7→
∫

R>0

(
α 7→ 1

cψ · α
·
∣∣∣ψ̂(α)

∣∣∣2)

Since we want to obtainω 7→ 1
2·π we have to choose

cψ = 2 · π ·
∫

R>0

α 7→
∣∣∣ψ̂(α)

∣∣∣2
α

 . (2.1.4)

2.1.3 Graduation of scales

So far we have used a lineargraduationof scales. That is if we increase the parametera by an amount of∆a
the scale increases by∆a. One can argue that it is more natural to grade the scales exponentially, because
e.g. the human auditory system perceives equal ratios of frequencies as equivalent. In an exponential
graduation the scale is multiplied by a certain factor when we increase the scale parameter by a specific
difference. The discrete wavelet transform as introduced in Section2.2.3will naturally use the exponential
graduation.

If we switch to different graduation, we have to adapt some weighting. This can be seen also intuitively,
because the more area a part of the wavelet transform covers the less it must be weighted.

Let γ be a graduation, that is a differentiable function which maps an intervalA surjectively toR>0.
Then we can substitutea by γ(α) in the formula (2.1.3), whereα is our new scale parameter.
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(
Wψ(w ·Wψ

∗f)
)
(t) =

∫
A

(
α 7→ γ′(α) · w(γ(α)) ·

(
f ∗
(
ψ∗ ∗ ψ

)
↑ γ(α)

)
(t)
)

=
∫
A

(
α 7→ γ′(α)

cψ · γ(α)2
·
(
f ∗
(
ψ∗ ∗ ψ

)
↑ γ(α)

)
(t)

)

=
∫
A

α 7→ γ′(α)
cψ · γ(α)2

·

(
f ∗ ψ

∗ ↑ γ(α)√
γ(α)

∗ ψ ↑ γ(α)√
γ(α)

)
(t)


(
Vψ,γf

)
(α) = f ∗ ψ

∗ ↑ γ(α)√
γ(α)(

V −1
ψ,γg

)
(t) =

∫
A

α 7→ γ′(α)
cψ · γ(α)2

·

(
g(α) ∗ ψ ↑ γ(α)√

γ(α)

)
(t)


If we chooseγ(α) = eα andA = R, this simplifies to(

Vψ,expf
)
(α) = f ∗ ψ

∗ ↑ eα√
eα(

V −1
ψ,expg

)
(t) =

∫
R

α 7→ 1
cψ · eα

·

(
g(α) ∗ ψ ↑ e

α

√
eα

)
(t)

 .

We become aware that when using the exponential graduation we would not need a scale-dependent weight-
ing if we normalised the scaled versions of the waveletψ to a constant‖·‖1 norm.

As a spin-off we obtain an alternative description ofcψ if we substituteα by eα in (2.1.4).

cψ = 2 · π ·
∫

R

(
α 7→

∣∣∣ψ̂(eα)
∣∣∣2)

2.1.4 Uncertainty principle and time frequency atoms

Ideally the wavelet analysis transform should turn a single occurrence of the wavelet in the signal into a
single dot in the wavelet space and the synthesis transform should map a single wavelet coefficient into
a single wavelet. However, the analysis transform maps a function with a one-dimensional domain to a
function with a two-dimensional domain. It is intuitively clear that there must be some redundancy in the
generated data, that is some points depend on others. This prohibits that a wavelet is mapped to a single
dot.

For our application of finding patterns in a signal this raises the problem that it is not possible to obtain
sharp peaks at the locations and scales of occurrences of the pattern. Instead even if a pattern appears in a
signal without distortion the wavelet transform generates a blurred dot.

The problem is quantitatively described by uncertainty principles. They are treated in great detail e.g.
in [Tes01]. We want to demonstrate the problem here only for the simple case of the FOURIER transform.

2.1.2 Theorem (HEISENBERG’s uncertainty principle).
Prerequisite. Let S be the so calledposition operatorandD be the so calledmomentum operatorwith

Df = f ′

Sf(t) = t · f(t) .

D must be restricted to a domain where it is somehow “skew-selfadjoint” or “skew-HERMITian”, namely
D∗ = −D. That is for the integration by parts must hold〈Df, g〉+ 〈f,Dg〉 = 0. This is fulfilled if

lim
t→∞

f(t) · g(t) = 0

lim
t→−∞

f(t) · g(t) = 0 .
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So in the following letf ∈ L2 (R). Further on bothD(Sf) andS(Df) must be defined and

lim
t→∞

t · f(t)2 = 0

lim
t→−∞

t · f(t)2 = 0 .

Claim. HEISENBERG’s uncertainty principlestates, roughly spoken, that the variance of a function and the
variance of its FOURIER transform cannot be minimised simultaneously [Ham89, LMR97]. The variance
with respect to zero is a functional defined asvar f = ‖Sf‖22. The exact statement is

var f · var f̂ ≥ 1
4
· ‖f‖22 ·

∥∥∥f̂∥∥∥2

2

or equivalently

‖Sf‖2 · ‖Df‖2 ≥
1
2
· ‖f‖22 .

The functions with least “waste” of variance are dilated GAUSSians.

var
(
t 7→
√
λ · e−(λ·t)2/2

)
· var

(
t 7→ 1√

λ
· e−(t/λ)2/2

)
=

1
2
·
√
π

Proof. The elegant classic proof from quantum mechanics can be found in [Tri80, Theorem 34.2]. It begins
with the observation that thecommutatorof D andS, namelyD ◦ S − S ◦D, is the identity operator.

D(Sf)(t)− S(Df)(t) = f(t) + t · f ′(t)− t · f ′(t)
= f(t)

The further proof consists essentially of the application of the CAUCHY-SCHWARZ inequality
(Lemma2.1.1).

‖f‖22 =
∣∣〈f, f〉∣∣

=
∣∣∣〈D(Sf)− S(Df), f

〉∣∣∣
=
∣∣∣〈D(Sf), f

〉
−
〈
S(Df), f

〉∣∣∣
D∗ = −D ∧ S∗ = S

=
∣∣−〈Sf,Df〉 − 〈Df, Sf〉∣∣

=
∣∣〈Sf,Df〉+ 〈Df, Sf〉∣∣

=
∣∣∣〈Sf,Df〉+ 〈Sf,Df〉∣∣∣

=
∣∣2 · <〈Sf,Df〉∣∣

≤ 2 ·
∣∣〈Sf,Df〉∣∣

≤ 2 · ‖Sf‖2 · ‖Df‖2

The CAUCHY-SCHWARZ inequality forSf andDf is an equation if both functions are collinear. The
inequality

∣∣<〈Sf,Df〉∣∣ ≤ ∣∣〈Sf,Df〉∣∣ becomes an equality if and only if〈Sf,Df〉 is real.
• CaseSf = (t 7→ 0)

This means thatf is constant zero almost everywhere. (The only exception can be at zero.)
• Case∃λ Df = λ · Sf

〈Sf,Df〉 = λ · 〈Sf, Sf〉
= λ · ‖Sf‖22
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Since〈Sf,Df〉 shall be real and‖Sf‖22 is always real,λ must be, too.
The equationDf = λ · Sf is an explicit differential equation that we are going to solve now. We
shall note before that iff is zero somewhere it is zero everywhere, becausef = t 7→ 0 is a solution
and the solution of the differential equation is unique. However the casef = t 7→ 0 was already
considered above, so we can assume thef is everywhere distinct from zero. This is the reason why
we can divide byf without restrictions.

f ′ = t 7→ λ · t · f(t)

f ′

f
= t 7→ λ · t

∣∣∣∣∣ g 7→ t 7→
∫

(0,t)

g

t 7→ ln(f(t))− ln(f(0)) = t 7→ λ · t
2

2

t 7→ f(t)
f(0)

= t 7→ eλ·
t2
2

∀t f(t) = f(0) · eλ· t
2
2

Forλ < 0 f is square integrable, but forλ ≥ 0 it diverges.

The variance according to the definition above is measured with respect to zero. It could also be
measured with respect to the centre of gravity. Then it would be invariant under translation.

A natural kind of analysis is to combine the FOURIER transform with the spatial representation of a
signal. Because of the minimal variance of a GAUSSian we could correlate a signal with a GAUSSian which
is translated both in time and in frequency (i.e. modulated). Such shifted and modulated GAUSSians are
calledtime frequency atoms. The resulting transform is known as GABOR transform.

2.1.3 Definition (GABOR transform). The GABOR transformG or windowedFOURIER transformfrom
(R → R) → (R → C) → (R → R → C) of a functionf with respect to awindow(or envelope) g is
defined as

Ggf(ω) = f ∗
(
t 7→ g(t) · e−i·ω·t

)
.

Due to the minimal uncertainty of the GAUSSian it is popular to chooseg(t) = e−(λ·t)2/2 whereλ controls
the width of the window.

We observe that the more narrow the GAUSSian the better the resolution in time and the worse the
resolution of frequencies. When the GAUSSian approaches zero variance we obtain the original signal
for all frequencies. (The limit function of the GAUSSian had to have a finite positive area but no extent,
which is certainly impossible.) When the GAUSSian approaches infinite variance we obtain the frequency
spectrum in each vertical slice. (Here the limit function of the GAUSSian would be a constant function with
finite positive area, which is also not possible.) What remains constant for all dilations of the GAUSSian is
the overall resolution. Therefore the GABOR transform is ideally suited for demonstrating the effect of the
uncertainty principle and why it is not possible to increase the overall resolution arbitrarily, see Figure2.3.
It is also the foundation for pictures of HEISENBERGboxes, such as Figure2.7.

The GABOR transform cannot be expressed as a wavelet transform. The closest analogon is the trans-
form with a MORLET wavelet. Unfortunately this wavelet is not suitable for the basic continuous wavelet
transform since the integral in (2.1.4) diverges. Nonetheless the MORLET wavelet is a very important
wavelet for the continuous wavelet transform. Modifications of the transform or the wavelet can fix this
problem.

The main difference between the GABOR transform and the MORLET wavelet transform is that in
the wavelet transformfrequencyandscaleare coupled by inverse proportionality whereas in the GABOR

transform the scale (i.e. the width of the envelope) is constant and only the frequency varies. (Figure2.4)
The wavelet transform matches the property of many natural signals that high frequent signal components
vary faster than low frequent ones.
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Figure 2.3: GABOR transforms with different window sizes of the complex signal displayed at
the top. The result of the GABOR transform contains complex values which are displayed as
follows: The darkness of a dot corresponds to the absolute value of the GABOR coefficient and
the colour corresponds to the complex argument (the angle or the phase shift). The frequency
zero is in the vertical centre. The sign of the frequency corresponds to the orientation of the
complex helix. The first image was generated with a discrete GABOR window of size one, the
last image with a window which is constant. The first one merely shows the time samples of
the signal whereas the last image shows the FOURIER transform when viewed from the side. It
can be seen that the more sharp the image is in vertical direction the more blurred is it in the
horizontal direction, and vice versa. That is, roughly spoken, the uncertainty principle.
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Wavelet transform: MORLET wavelet GABOR transform

Figure 2.4: Different building blocks for the MORLET wavelet transform and the GABOR trans-
form. For easy separation of phase and amplitude these functions are complex valued. The real
part is plotted with a solid line and the imaginary part is plotted with a dashed line.

2.1.5 Different filters for analysis and synthesis

We have seen that the condition for a function being a wavelet is rather weak. This is due to the redundancy
of the transform. It gives us some freedom in choosing the wavelet. For instance it is possible to invoke
different wavelets for the analysis transform (2.1.1) and the synthesis transform (2.1.2). The derivation in
Section2.1.2needs only small modification and leads to an adaption of (2.1.4):

The transformWϕ invertsWψ
∗ (more precisely∀f Wϕ

(
w ·Wψ

∗f
) a.e.= f with w(a) = 1

cψ,ϕ·a2 ) if and
only if the constantcψ,ϕ with cψ,ϕ 6= 0 and

cψ,ϕ = 2 · π ·
∫

R>0

α 7→ ψ̂(α) · ϕ̂(α)
α


exists. Using different wavelets for analysis and synthesis is also quite popular with the discrete wavelet
transform. There such wavelet bases are calledbiorthogonal.

2.2 Discrete wavelet transform

In the previous section we have considered the continuous wavelet transform and we have seen how it
fits our problem. To be able to transform measured (i.e. sampled) data we must be able to adapt the
transformation to discrete data. In general this is not easy for any function transformation and sometimes
it is necessary to start from scratch when it comes to a discrete version of a continuous transform.

2.2.1 From CWT to discretised CWT

When switching from the continuous wavelet transform to the discrete one we have to limit and discretise
both the time and the scale. While the time discretisation and the time bounds are naturally given by the
discrete input signal, the discretisation of the scale is not obvious.
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The discrete convolution is a good approximation to the continuous convolution, so the discretised
wavelet transform will also split a signal into several bands where each band is obtained by a convolution
of the signal with some wavelet function. The most general approach uses a sequenceg of n analysis filters
and a sequencẽg of n corresponding synthesis filters. Then the synthesis and analysis transforms are given
by

(Wg
∗x)j = x ∗ g∗j

Wegy =
n∑
j=1

yj ∗ g̃j .

Note that the sum adds signals rather than scalar values. Since multiple filters are employed this scheme
is called afilter bank. The condition forperfect reconstructioncan be derived quite similarly to that of the
continuous transform.

Weg(Wg
∗x) =

n∑
j=1

x ∗ g∗j ∗ g̃j

= x ∗
n∑
j=1

g∗j ∗ g̃j

This means that the superposition of the convolutions of the analysis and synthesis filters must result in the
unit impulse, that is

n∑
j=1

g∗j ∗ g̃j = δ . (2.2.1)

This is the same situation as for the continuous transformation but here we are lucky that the neutral element
of the discrete convolution does not need a special treatment.

Please note that in the further presentation of the theory we want to substituteg∗j by gj . We used the
adjoint in order to match the idea of correlating a signal with a pattern, but the following derivations are
simplified when we incorporate the adjoint into the analysing filters.

2.2.2 From discretised CWT to shift invariant DWT

In the above approach it remains vague how the filtersgj , g̃j may actually be chosen. If we simply sample
continuous wavelet functions we will not match the reconstruction property (2.2.1). It is to be assumed that
there is no simple or natural way to achieve this. Instead of following this direction we want to introduce a
technique that elegantly preserves the invertibility, provides a uniform shape of the wavelet throughout all
scales and also addresses efficiency issues.

The trick is to divide the multi-scale transformation into a cascade of two-scale transformations. The
two-scale transformation splits the signal into a low-frequency (smooth) part and a high-frequency part by
the filtershj andgj , respectively. The low-frequency output is fed to the next two-scale transform. That
is, if the input signal isx0, we compute forn scales (j ∈ {0, . . . , n− 1}) iteratively

xj+1 = xj ∗ hj (2.2.2)

yj+1 = xj ∗ gj

and the result of the transformation are then+ 1 signalsy1,y2, . . . ,yn,xn. If we define

H0 = δ Hj+1 = Hj ∗ hj

Gj+1 = Hj ∗ gj

which can be unrolled to

Hj+1 = h0 ∗ h1 ∗ · · · ∗ hj−1 ∗ hj

Gj+1 = h0 ∗ h1 ∗ · · · ∗ hj−1 ∗ gj



30 CHAPTER 2. FROM CONTINUOUS TO DISCRETE WAVELETS

∗h . . . ∗h̃

+

∗g . . . ∗g̃

Figure 2.5: One level of a generalised discrete translation invariant wavelet transform: Analysis,
interim processing (the dots) and synthesis. The interim processing may consist of more levels
of subband coding, de-noising, compression and others.

∗h2 x3 ∗h̃2

∗h1 ∗g2 y3 ∗g̃2 + ∗h̃1

∗h0 ∗g1 y2 ∗g̃1 + ∗h̃0

∗g0 y1 ∗g̃0 +

Figure 2.6: A complete generalised translation invariant wavelet transform build from three
levels. The large scales (because of longer filters) are at the top.

then we obtain explicit representations for the resulting signals.

xj = x0 ∗Hj

yj = x0 ∗Gj

Thus the cascaded transform can be considered as a discretised continuous transform with respect to scale
dependent filtersG1, G2, . . . , Gn,Hn. Usually the signalxn is a strongly low-pass filteredx0, whereasy1

is x0 filtered through a high-pass, and the other signals are band pass filtered with respect to consecutive
frequency bands.

Reconstruction It is convenient to split the whole synthesis transform up into small pieces analogously to
the analysis transform. If we can invert each step of the analysis transform we can invert the total transform.
Also the synthesis transform shall be linear and translation invariant thus there is no other choice than

xj = xj+1 ∗ h̃j + yj+1 ∗ g̃j (2.2.3)

with still unknown filter sequences̃h andg̃.
Figure2.5 shows the analysis and synthesis at a single level. Figure2.6 shows the cascade of such

levels establishing the total wavelet transform.
Let (h, g) be the analysis filter pair. We want to find a condition for the synthesis filter pair(h̃, g̃) which

reconstructs every input signalx. To this end we fuse (2.2.2) and (2.2.3):

∀x x ∗ h ∗ h̃+ x ∗ g ∗ g̃ = x

⇔ h ∗ h̃+ g ∗ g̃ = δ

which is in fact a BEZOUT equation[Wei05, BEZOUT’s Theorem], [Str95, Theorem 25.20]. From Algebra
we know that we can find appropriate filtersh̃ andg̃ if and only if h andg are relatively prime with respect
to convolution.
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Solutions with minimal filter sizes can be computed efficiently using the EUCLIDean algorithm(Sec-
tion 3.2.1). If h̃ andg̃ are particular solutions, the general solution is of the form

h̃s = h̃+ g ∗ s
g̃s = g̃ − h ∗ s

with s ∈ `0 (Z).
Usually the two-scale transforms are designed in a way that each transform operates on a doubled scale

(i.e. halved frequency) relatively to the previous one. This is achieved by up-sampling the filter by a factor
of two. The invertibility of the transform is not affected by the up-sampling.

h ∗ h̃+ g ∗ g̃ = δ | ↑ 2

(h ∗ h̃+ g ∗ g̃) ↑ 2 = δ ↑ 2

(h ↑ 2) ∗ (h̃ ↑ 2) + (g ↑ 2) ∗ (g̃ ↑ 2) = δ

Since the frequency is halved again and again we obtain an exponential graduation of frequencies.

hj = h ↑ 2j

gj = g ↑ 2j

The shift invariant wavelet transform can then be written explicitly as

xj = x0 ∗Hj Hj+1 = h ∗ h ↑ 2 ∗ h ↑ 4 ∗ · · · ∗ h ↑ 2j−1 ∗ h ↑ 2j

yj = x0 ∗Gj Gj+1 = h ∗ h ↑ 2 ∗ h ↑ 4 ∗ · · · ∗ h ↑ 2j−1 ∗ g ↑ 2j .

The advantage of this choice is clearly that we only need to design one filter pair, namelyh, g. The
disadvantage is that the choice is more difficult. Choosingh andg such thatHj andGj have a smooth
shape or even thatGj matches a specific pattern (the main goal of this work) is a challenging problem,
which we consider in more detail in Section4.2and Section3.3, respectively.

Because we will need the structure ofHj andGj frequently in this document, we introduce an operator
for it.

2.2.1 Definition (Refinement operator).For a maskh therefinement operatorRh from `0 (Z)→ `0 (Z)
performs the following:

Rhg = h ∗ (g ↑ 2) (2.2.4)

If h has index interval{ν, . . . , κ} thenRjhδ has index interval
{

(2j − 1) · ν, . . . , (2j − 1) · κ
}

.
Using this notation we can write

Hj+1 = Rjhh
Gj+1 = Rjhg .

Note that the kind of transformation described in this section maps a discrete translation of the input
signal to a translation of the output sequences. Thus it fills the gap between the better known continuous
and discrete transforms (see Section2.2.3). It was invented several times [Fow05] and got a lot of different
names, likequasi-continuous wavelet transform[Mae97], stationary wavelet transform[NS95, MMOP04],
translation invariant wavelet transform[CL01, CD95], shift invariant wavelet transform[LGO+95b], al-
gorithmé à trous[HKMMT89, Dut89, Mal99], cycle spinning[CD95], maximal overlap wavelet transform
[PW00], redundant wavelet transform[LB98], undecimated wavelet transform[LGO+95a]. Additionally
there are variations of that generalisation such as theover-complete discrete wavelet transform[Bra03]
which employs down-sampling in some transform levels but not all.

These terms reflect the contexts in which the transform was developed or applied. The termquasi-
continuousrefers to the similarity with the continuous wavelet transform. The termstranslation invariant
andshift invariantare a bit misleading because they originally mean that the result does not depend on
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Time sampled signal Frequency transformed signal Wavelet coefficients

Figure 2.7: HEISENBERGboxes of different signal representations

the translation of the input signal. This applies e.g. to the absolute frequency spectrum. In fact the result
of the translation invariant transform depends on the translation of input but in a very natural way - it is
also translated. In other words: The translation invariant transformation commutes with the shift operation.
The namealgorithmé à trous describes the up-sampling of the filters, i.e. holes (= French “trous”) are
added to the filters for higher scales. An alternative implementation is addressed withcycle spinning. It
means that instead of modifying the wavelet transform the signal is shifted and each shifted version is
transformed. Actually this method computes the same wavelet coefficients as thealgorithmé à trous, but
some of them multiple times. The fact that the wavelets of the represented frame overlap is captured by the
notion maximal overlap wavelet transform. Since “decimation” is an synonym for down-sampling here,
undecimatedmeans that in contrast to the discrete wavelet transform the down-sampling is left out. Last but
not least the termsredundantandover-completepoint to the increased size of transformed data compared
with the discrete wavelet transform.

Furthermore a note on a generalisation: Instead of two-scale transforms one can use any larger number
m of scales in one transform level. This is useful to insert interim scales if the doubled-scale grid is too
coarse. Again you have one low-pass filterhj for thej-th scale, the low-pass filters are cascaded. Addition-
ally you havem−1 high-pass filtersg0,j , . . . , gm−2,j that are specific to the interim frequency bands. The
perfect reconstruction condition is quite the same: The greatest common divisor ofhj , g0,j , . . . , gm−2,j

that isgcd
(
. . . gcd(hj , g0,j), . . . gm−2,j

)
must be a unit. The EUCLIDean algorithm can be used to deter-

mine the greatest common divisor and to solve the BEZOUT equation when applied to the nested applica-
tions ofgcd.

2.2.3 From shift invariant DWT to DWT

Here we reach the destination of our travel from the continuous to the discrete wavelet transform. For some
applications like compression it is not satisfying that the size of data is increased by the transform. It is true
that the research on compression based on redundant transforms lead to considerable success with so called
matching pursuits, but with matching pursuits perfect reconstruction is hard to achieve. (See Section2.2.5.)
Also for other applications it is of interest to reduce the amount of processed data, rather than to increase it.
Even more, the uncertainty principle (Section2.1.4) gives reasons why an increased amount of data does
not necessarily increases the amount of information. That is the shift invariant transform does not increase
resolution.

We observe that in the translation invariant DWT independent from the scale there is the same distance
between two wavelets that are neighbouring with respect to time. This is what makes this transform trans-
lation invariant. It means that the wavelets overlap relatively less in the small scales and much in the large
scales. It seems to be natural to use a sampling grid that becomes coarser as the scale increases. Figure2.7
illustrates the favoured division of the time-frequency plane.

This division together with invertibility can be achieved with the same trick we used to verify invert-
ibility of the translation invariant DWT (Section2.2.2): We use a cascade of two-scale transformations and
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if each two-scale transformation is invertible and preserves the size of the signal, then the whole transfor-
mation is invertible and generates data of the size of the input signal.

We achieve the coarser grid at the larger scales by dropping each odd indexed value of the result signals
in each step of the transformation. That is, compared with (2.2.2) we add down-sampling by a factor of 2.

xj+1 =
(
xj ∗ hj

)
� 2 (2.2.5)

yj+1 =
(
xj ∗ gj

)
� 2

This scheme was known assubband coderin signal processing even before the theory of the discrete
wavelet transform. Because there is no redundancy this transform is also calledcritically sampled.

It is worth looking for explicit formulations for the resulting signals.

xj = ((. . . ((x0 ∗ h0) � 2 ∗ h1) � 2 . . . ∗ hj−2) � 2 ∗ hj−1) � 2
= ((. . . ((x0 ∗ h0 ∗ h1 ↑ 2) � 2) � 2 . . . ∗ hj−2) � 2 ∗ hj−1) � 2
= ((. . . (x0 ∗ h0 ∗ h1 ↑ 2) � 4 . . . ∗ hj−2) � 2 ∗ hj−1) � 2

=
(
x0 ∗ h0 ∗ h1 ↑ 2 ∗ . . . ∗ hj−2 ↑ 2j−2 ∗ hj−1 ↑ 2j−1

)
� 2j

yj =
(
x0 ∗ h0 ∗ h1 ↑ 2 ∗ . . . ∗ hj−2 ↑ 2j−2 ∗ gj−1 ↑ 2j−1

)
� 2j

Again, we want to supply filters which accumulate the operations applied to an input signal over all
scales.

H0 = δ Hj+1 = Hj ∗ hj ↑ 2j

Gj+1 = Hj ∗ gj ↑ 2j

Hj+1 = h0 ∗ h1 ↑ 2 ∗ · · · ∗ hj−1 ↑ 2j−1 ∗ hj ↑ 2j

Gj+1 = h0 ∗ h1 ↑ 2 ∗ · · · ∗ hj−1 ↑ 2j−1 ∗ gj ↑ 2j

These can be used to describe the transformation shortly.

xj =
(
x0 ∗Hj

)
� 2j

yj =
(
x0 ∗Gj

)
� 2j

In order to provide a uniform shape of allGj and to apply the theory ofrefinable functions usually the
same filterh is used for allhj , and another filterg is used for allgj . In anticipation of our later use of the
low-pass filter for refinable functions and because we can avoid

√
2 factors in some filter masks, we want

to separate the factor
√

2 from the filtersh andg.

hj =
√

2 · h
gj =

√
2 · g

We end up with a flowchart as in Figure2.8.
Note that non-uniform filters are used rarely, but nevertheless they can be useful e.g. for generating

exponentials. If for somec holds

hj =
(
1, e2

j ·c
)

then we obtain a discretised exponential forHj .

Hj =
(
ek·c : k ∈

{
0, . . . , 2j − 1

})
This is particularly interesting for complexc where theHj are helixes (waves) of the same frequency with
exponential envelopes of different widths.
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∗
√

2 · h � 2 . . . ↑ 2 ∗
√

2 · h̃

+

∗
√

2 · g � 2 . . . ↑ 2 ∗
√

2 · g̃

Figure 2.8: One level of a discrete wavelet transform

Discretised continuous wavelet transformn · s
Translation invariant wavelet transform n · log2 n
Discrete wavelet transform n

Table 2.1: Time and space requirements for several kinds of wavelet transform withs scales
applied to a signal of sizen. The dependency on the filter length is neglected.

Reconstruction

We want to explore how we can restore the signal from the result we obtain from the discrete transform
including down-sampling. Further on we want to check when this is possible. In contrast to the translation
invariant transform which is not surjective the level-wise reconstruction is obligatory for the critically
sampled discrete transform.

2.2.2 Lemma.
Prerequisite. A function sequencef from {0, . . . , n− 1} → A→ A of surjective maps.A is an arbitrary
set here but it will be a set of signals in our application.
Claim. The composed mapf0 ◦ f1 ◦ · · · ◦ fn−1 is injective if and only if eachfj is injective.

Proof.

1. If eachfj is invertible then the inverse of the composition is the reversed composition of the inverted
maps:f−1

n−1 ◦ f
−1
n−2 ◦ · · · ◦ f

−1
0 .

2. Since eachfj is surjective each value of the range of the composition has an inverse image with
respect tofn−1, which in turn has an inverse image with respect tofn−2, and so on. Analogously
each composition of surjective maps is surjective.

3. If one of the maps is not invertible consider the one with the least index, sayj. Since it is not
invertible there must exist two distinct argumentsx′0 andx′1 which have the same valuey′ with
respect tofj (fj(x′0) = y′ andfj(x′1) = y′). Since all maps are surjectivex′0 andx′1 must have
originsx0 andx1 with respect tof0◦f1◦ · · ·◦fj−1. Because these functions map uniquelyx′0 6= x′1
impliesx0 6= x1. Since the values of the maps with indices abovej depend exclusively ony′ the
total composition yield the same valuey. That is the composition computes the valuey independent
from whether the input isx0 or x1. Thus the composition is not invertible in this case.

Forf being the sequence of transformation levels of the analysis transform we conclude that the whole
multi-scale transformation is invertible if and only if each of the two-scale transformations is invertible.
The lemma does not apply to the translation invariant transform because the steps of this transform produce
redundant data and thus are not surjective.

Now we want to find out how to invert a single level of the analysis transform. The down-sampling
operation in (2.2.5) is somewhat difficult to handle thus we want to get rid of it. To this end we need the
following property of down-sampling.

2.2.3 Lemma.
Prerequisite. {x, h} ⊂ `0 (Z)
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Claim.

(x ∗ h) � k =
k−1∑
j=0

(x→ j � k) ∗ (h← j � k)

Proof. In (x ← j) � k the coefficients with indices from the residue class[j]k are preserved. This means
that for allj from {0, . . . , k − 1} the sequence of translated and down-sampled variants ofx contains all
coefficients ofx. Thus you can reconstructx from them. The expressionx � k ↑ k in fact means that the
coefficients with multiples ofk as indexes are kept and the others are cleared.

x ∗ h =

k−1∑
j=0

x→ j � k ↑ k ← j

 ∗
k−1∑
l=0

h← l � k ↑ k → l


=
k−1∑
j=0

k−1∑
l=0

((x→ j � k) ∗ (h← l � k)) ↑ k → (l − j)

On down-sampling by a factor ofk all filters vanish which have only zeros at the indices which are multiples
of k (see (1.2.3)). Sincel − j ∈ {1− k, . . . , k − 1} this is true for all translations withl − j 6= 0.

(x ∗ h) � k =
k−1∑
j=0

k−1∑
l=0

((x→ j � k) ∗ (h← l � k)) ↑ k → (l − j) � k

=
k−1∑
j=0

((x→ j � k) ∗ (h← j � k)) ↑ k � k

=
k−1∑
j=0

(x→ j � k) ∗ (h← j � k)

This connection allows for a different interpretation of the expression(x∗h) � 2. Instead of convolving
x with h and then down-sample, we can splitx andh into their even-indexed and odd-indexed subse-
quences, convolve corresponding subsequences and add them. This allows to represent one transformation
step with a matrix-vector convolution, that is a matrix-vector multiplication where the convolution plays
the role of the multiplication.(

xj+1

yj+1

)
=
√

2 ·

(
h � 2 (h← 1) � 2
g � 2 (g ← 1) � 2

)
~

(
xj � 2

(xj → 1) � 2

)
According to [DS98] we introduce the notions of polyphase and modulation matrices. They lead

straightforwardly to the reconstruction conditions as known from [Dau92].

2.2.4 Definition (Polyphase matrix).For discrete signalsh, g we use the abbreviations

he = h � 2 ho = (h← 1) � 2
ge = g � 2 go = (g ← 1) � 2

which let us define thepolyphase matrixP as follows:

P =
√

2 ·

(
he ho
ge go

)
.

The Figure2.9shows how the discrete wavelet transform can be implemented in terms of the polyphase
matrix.
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� 2 . . . ↑ 2

+

→ 1 � 2 . . . ↑ 2 ← 1

P~ P̃~

Figure 2.9: Discrete wavelet transform with a polyphase matrix

2.2.5 Definition (Modulation matrix). For a polyphase matrix as given above the correspondingmodula-
tion matrix is

h− = he ↑ 2− (ho ↑ 2)→ 1
g− = ge ↑ 2− (go ↑ 2)→ 1

M =

(
h h−
g g−

)
.

The signalh− differs fromh only in the signs of the odd indexed coefficients.

Obviously both polyphase and modulation matrix carry the same information. Very similar statements
can be formulated for either representation. None of them is really superior to the other one, we will use
both of them as it is convenient.

Since we converted a transformation step into a matrix-vector multiplication we get the idea that the
inverse transform is just the solution of a system of two linear equations. However the problem is that a
convolutional division (which is in fact the solution of linear difference equation with constant coefficients)
has the risk of numerical instabilities. Thus we have to explore in which cases we can invert without
division.

2.2.6 Lemma (Invertibility of matrices over rings).
Prerequisite. (R, 0, 1,+, ·) is a ring andM a matrix,M ∈ Rn×n.
Claim. An inverse matrixM−1 ∈ Rn×n exists (M ·M−1 = I) if and only if the determinant ofM is
invertible (a so calledunit).

Proof.

1. M is invertible “⇒” detM is a unit

1 = det I
= det

(
M ·M−1

)
product of determinants

= detM · detM−1

The unit element1 fromR can only be factorised into units of that ring, thusdetM must be a unit.
2. detM is a unit “⇒” M is invertible

If M is considered as row vector of column vectors(m1, . . . ,mn) each element ofM−1 can be
calculated by CRAMER’s rule [Str95, Theorem 18.8]:

(M−1)i,j = (detM)−1 · det(m1, . . . ,mj−1, ei,mj+1, . . . ,mn)

whereei is the unit vector where all components are zero except theith one which is equal to1.
The inversion ofdetM is possible becausedetM is a unit according to the assumption.
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2.2.7 Corollary. Consider the set of discrete signals of finite length: Since one-length discrete signals are
the only ones that are invertible with respect to convolution, a polyphase matrixP is invertible with finite
length signals if and only if the convolutional determinant ofP is a monomial.

detP = c · δ → k

where

detP =
1
2
· (he ∗ go− ho ∗ ge)

2.2.8 Corollary. If the polyphase matrix is invertible thenhe andho must be relatively prime. Ifhe and
ho are not relatively prime, you can extract a common divisor which is not a monomial. This divisor can
also be extracted from the determinant.

Let s be such a common divisor

he = s ∗ h′e
ho = s ∗ h′o

then we obtain

det

(
he ho
ge go

)
= det

(
s ∗ h′e s ∗ h′o
ge go

)

= s ∗ det

(
h′e h′o
ge go

)
.

Sinces is not a monomial, the determinant is not, as well and thus the matrix cannot be inverted.

2.2.9 Definition (Complementary filter pair). A pair of filters(h, g) is calledcomplementary[DS98] if
and only if

det

(
he ho
ge go

)
=

1
2
· δ .

2.2.10 Corollary. If a pair of filters(h, g) is complementary, the polyphase matrix can be inverted. By
CRAMER’s rule we obtain

P−1 =
√

2 ·

(
go −ho
−ge he

)
.

2.2.11 Corollary. If a pair of filters(h, g) is complementary, a single level of the discrete wavelet trans-
formation can be inverted by(

xj � 2
(xj → 1) � 2

)
=
√

2 ·

(
go −ho
−ge he

)
~

(
xj+1

yj+1

)

=
√

2 ·

(
(g ← 1) � 2 −(h← 1) � 2
−g � 2 h � 2

)
~

(
xj+1

yj+1

)
.

Because we can reconstruct a signal from its even and odd indexed coefficients by

x = (x � 2) ↑ 2 + ((x→ 1) � 2) ↑ 2← 1

we derive a compact formula from the up-sampled expression(
xj � 2 ↑ 2

(xj → 1) � 2 ↑ 2

)
=
√

2 ·

(
(g ← 1) � 2 ↑ 2 −(h← 1) � 2 ↑ 2
−g � 2 ↑ 2 h � 2 ↑ 2

)
~

(
xj+1 ↑ 2
yj+1 ↑ 2

)
by vectorially convolving both sides with(δ, δ ← 1) from left.
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xj =
√

2 ·
(
(g ← 1)−, h− ← 1

)
~

(
xj+1 ↑ 2
yj+1 ↑ 2

)
=
√

2 ·
(
(g ← 1)− ∗ (xj+1 ↑ 2) + (h− ← 1) ∗ (yj+1 ↑ 2)

)
2.2.12 Notation. If a pair of filters is(h, g) complementary, then the pair of filters for reconstruction (the
one for whichxj =

√
2 · (h̃ ∗ (xj+1 ↑ 2) + g̃ ∗ (yj+1 ↑ 2)) hold) is called thedual filter pair (h̃, g̃).

h̃ = (g ← 1)−
g̃ = h− ← 1

P−1 =
√

2 ·

(
h̃e g̃e

h̃o→ 1 g̃o→ 1

)

2.2.13 Theorem.
Claim. The modulation matrix (Definition2.2.5) is regular if and only if the polyphase matrix is regular.
It holds

M−1 =

(
h̃ g̃

h̃− g̃−

)

Proof. You can transform between a polyphase matrix and the corresponding modulation matrix by an
orthogonal transformation. We expand the slightly modified primal and dual polyphase matrices into rep-
resentations using the modulation matrices.(

he ↑ 2 ho ↑ 2→ 1
ge ↑ 2 go ↑ 2→ 1

)
=

(
h h−
g g−

)
· 1
2
·

(
1 1
1 −1

)
(

h̃e ↑ 2 g̃e ↑ 2
h̃o ↑ 2→ 1 g̃o ↑ 2→ 1

)
=

1
2
·

(
1 1
1 −1

)
·

(
h̃ g̃

h̃− g̃−

)
We know that the dual polyphase matrix is the inverse of the primal polyphase matrix, thus if we replace

them with their modulation matrix representations we obtain that the convolutional product of the primal
modulation matrix and its proposed inverse is indeed the identity matrix.(

δ 0
0 δ

)
=
√

2 ·

(
he ↑ 2 ho ↑ 2→ 1
ge ↑ 2 go ↑ 2→ 1

)
~
√

2 ·

(
h̃e ↑ 2 g̃e ↑ 2

h̃o ↑ 2→ 1 g̃o ↑ 2→ 1

)
Definition2.2.12

=
1
2
·

(
h h−
g g−

)
·

(
1 1
1 −1

)
~

(
1 1
1 −1

)
·

(
h̃ g̃

h̃− g̃−

)

=

(
h h−
g g−

)
~

(
h̃ g̃

h̃− g̃−

)

2.2.14 Corollary. The filtersg andh form aperfect reconstructionfilter bank if and only if the determinant

of the modulation matrix

(
h h−
g g−

)
is a certain monomial, more precisely

h ∗ g− − h− ∗ g = δ → 1 .

This is a conclusion of the Definition2.2.5of the modulation matrix, the polyphase matrix conversion
used in Theorem2.2.13and the fact that the determinant of a polyphase matrix of a complementary filter
pair is 1

2 · δ (Definition2.2.9).
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2.2.15 Remark.From expandingM−1~M = I, the condition for perfect reconstruction in the presence of
down-sampling can be given in a style closer to the condition given for translation invariant transformation
in Section2.2.2.

h ∗ h̃+ g ∗ g̃ = δ

h ∗ h̃− + g ∗ g̃− = 0

That is, a filter pair(h, g) suitable for the discrete wavelet transform with down-sampling can also be used
for the translation invariant transform. The second equation is additional for the down-sampled transform.
Roughly spoken it means that no information is lost by down-sampling.

2.2.16 Lemma.
Prerequisite. The primal filter pair(h, g) is complementary, and(h̃, g̃) is the dual filter pair.
Claim. (

h ∗ h̃
)

� 2 =
1
2
· δ (2.2.6)

(g ∗ g̃) � 2 =
1
2
· δ (2.2.7)

(h ∗ g̃) � 2 = 0 (2.2.8)(
g ∗ h̃

)
� 2 = 0

Proof.

P =
√

2 ·

(
he ho
ge go

)
Because of Definition2.2.12

P−1 =
√

2 ·

(
h̃e g̃e

h̃o→ 1 g̃o→ 1

)
I = P ~ P−1

1
2
·

(
δ 0
0 δ

)
=

(
he ho
ge go

)
~

(
h̃e g̃e

h̃o→ 1 g̃o→ 1

)

=

(
he ∗ h̃e + ho ∗ h̃o→ 1 he ∗ g̃e + ho ∗ g̃o→ 1
ge ∗ h̃e + go ∗ h̃o→ 1 ge ∗ g̃e + go ∗ g̃o→ 1

)

=


(
h ∗ h̃

)
� 2 (h ∗ g̃) � 2(

g ∗ h̃
)

� 2 (g ∗ g̃) � 2



2.2.17 Remark (Orthogonal filter banks).If it holds h̃ = h∗ then we have anorthogonal filter bank. In this
case from Lemma2.2.16follows orthogonality betweenh and its even translates in the sense that

1
2
· δ =

(
h ∗ h̃

)
� 2

=
(
h ∗ h∗

)
� 2

〈h, h→ 2 · k〉 =

 1
2 : k = 0
0 : else

.

For the high-pass filter of an orthogonal filter bank holdsg = h∗− → 1.
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Transformations between perfect reconstruction filter banks

In this section we want to explore operations on filter banks that do not interfere with the perfect recon-
struction property.

2.2.18 Theorem.
Prerequisite. Let (h, g) be a complementary filter pair. The filterh contains the factors, i.e. there is some
h′ with h = h′ ∗ s and the filterg′ is defined byg′ = g ∗ s−.
Claim. The filter pair(h′, g′) is complementary as well. Intuitively spoken, factors can be moved from
one filter to the other including alternating the filter coefficients’ signs, while preserving the perfect recon-
struction property.

Proof. We start with Corollary2.2.14.

δ → 1 = h− ∗ g − h ∗ g−
= h ′− ∗ s− ∗ g − h ′ ∗ s ∗ g−
= h ′− ∗ g ′ − h ′ ∗ g ′−

We will need this property when considering vanishing moments in Section4.3.2.

2.2.19 Remark.We can also compute the dual filter pair(h̃′, g̃′) for the filters of the previous theorem. Due
to Definition2.2.12it is given by

h̃′ = (g′ ← 1)−
= (g ∗ s− ← 1)−
= (g ← 1)− ∗ (s−)−
= h̃ ∗ s

g̃′ = h′− ← 1
g̃′ ∗ s− = h′− ∗ s− ← 1

= h− ← 1
= g̃ .

This means if the factors is moved fromh to g with alternated signs thens− is moved from̃g to h̃.

Another transformation which converts a perfect reconstruction filter bank into another one is the lifting
scheme which is described in Section3.2. The lifting operation fixes one of the filtersh andg while it
changes the other one.

2.2.4 Multi-scale analysis

We have considered discrete versions of the wavelet transform as discrete convolutions, so far. We want
to bridge from the discrete wavelet transform to the continuous one in a more direct way. Is it possible to
replace the discrete input signalx by a real functionf and is there a continuous wavelet functionψ such
that the discrete wavelet transform with filtersh andg is simply a continuous wavelet transform sampled
at several discrete points? Actually, this is possible.

We want to interpret the coefficients of the interim signals of the discrete wavelet transformx0,x1, . . .
as coefficients of appropriately translated and scaled versions of some continuous functionϕ. The coeffi-
cient vectorxj shall represent the functionxj ∗ϕ ↑ 2j . The functions representable byxj shall be denoted
with Vj . We expect that all functions that can be represented at a coarse scale can also be represent at a finer
scale, i.e.Vj+1 ⊂ Vj . If at some scale the high-pass coefficients vanishes (yj = 0), then a function at this
scale can also be represented at the next coarser scale. These claims are subsumed in the term multi-scale
analysis. [Mal99]

In order to define the multi-scale analysis we need the notion of a RIESZ basis, especially a RIESZ basis
of integer translates of a function.
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2.2.20 Definition (RIESZ basis). A sequencef from Z → H of functionsfk from a HILBERT spaceH
is called a RIESZ basisof H if the set of linear combinations offk is dense inH and the norm inH is
equivalent to thè2 norm of expansion coefficient sequences, that is

∃ {A,B} ⊂ R>0 ∀c ∈ `2 (R) A · ‖c‖22 ≤

∥∥∥∥∥∥
∑
k∈Z

ck · fk

∥∥∥∥∥∥
2

H

≤ B · ‖c‖22 .

2.2.21 Definition. If the sequence of translates(ϕ→ k : k ∈ Z) from a HILBERT spaceH forms a RIESZ

basis of the closure of its linear span, we say thatϕ has the RIESZ basis propertyB (ϕ), that is

B (ϕ) ⇔ ∃{A,B} ⊂ R>0 ∀c ∈ `2 (R) A · ‖c‖22 ≤ ‖c ∗ ϕ‖
2
H ≤ B · ‖c‖

2
2 .

2.2.22 Definition (multi-scale analysis, multi-resolution analysis).A multi-scale analysisor multi-
resolution analysisof L2 (R) is a sequence

(
Vj : j ∈ Z

)
of spacesVj with respect to a functionϕ if the

following holds.⋃
j∈Z

Vj = L2 (R) upper limit⋂
j∈Z

Vj = {0} lower limit

∀j Vj+1 ⊂ Vj nesting of spaces

∀j f ∈ Vj+1 ⇔ f ↓ 2 ∈ Vj scales of spaces

V0 =
{
c ∗ ϕ : c ∈ `0 (Z)

}
B (ϕ) The integral translates ofϕ must form a

RIESZ basis.

2.2.23 Remark.

1. The spacesVj form a chain of inclusion.

{0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ⊂ L2 (R)

2. From the scaling relation between the spaces it follows:

Vj =
{
(c ∗ ϕ) ↑ 2j : c ∈ `0 (Z)

}
.

3. Because of the nesting of the spacesVj and because of the finer scales whichVj has in addition to
Vj+1, it must be possible to representϕ in terms of small dilated versions of itself.

V1 ⊃
{
(c ∗ ϕ) ↑ 2 : c ∈ `0 (Z)

}
⇒ ϕ ↑ 2 ∈ V1

V1 ⊂ V0

⇒ ϕ ↑ 2 ∈ V0

V0 =
{
c ∗ ϕ : c ∈ `0 (Z)

}
⇒ ∃c ∈ `2 (Z) ϕ ↑ 2 a.e.= c ∗ ϕ

The last line is known as thetwo-scale equationor therefinement relation.
We only know, thatϕ ↑ 2 ∈ V0, but we cannot assert thatϕ ↑ 2 ∈

{
c ∗ ϕ : c ∈ `0 (Z)

}
. Thus

in order to representϕ ↑ 2 in terms ofϕ we may need limit processes. Consequently we need the
RIESZ basis property in the last implication: Sinceϕ ∈ L2 (R) we can bound the norm ofc and thus
the series implied by the convolution with the signalc of potentially infinite size can be evaluated
in theL2 (R) sense.

4. The operatorf 7→ (c ∗ f) ↓ 2 is linear, thusϕ is an eigenfunction of this operator with respect to
the eigenvalue1.
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Figure 2.10: Refinement of a quadratic B-spline and the orthogonal DAUBECHIES-2 generator

5. Methods for approximating the shape of a refinable function are discussed in Section3.1.1.

2.2.24 Definition. Let h be a finitely supported signal,h ∈ `0 (Z). A functionϕ with ϕ ∈ R → R which
satisfies a certain self-similarity condition

ϕ = 2 · (h ∗ ϕ) ↓ 2 (2.2.9)

alternatively ∀t ∈ R ϕ(t) = 2 ·
∑
k∈Z

hk · ϕ(2 · t− k)

is called arefinable functionwith respect to therefinement maskh. Within a multi-scale analysis it is called
thescaling functionor thegenerator.

If h is used for the analysis transform thenϕ is called theprimal generator. Analogouslyϕ̃, which is
the refinable function with respect to the synthesis generator maskh̃ is thedual generator.

The Figure2.10illustrates how a refinable function can be assembled by shrunken versions of itself.

2.2.25 Remark.The term “refinable function” defines only a relation, not a construction. Until here it is
not clear what refinable functions for a mask exist (none, one, two, more) and whether there is only one
refinement mask for a refinable function. Section3.1.1shows ways of construction a refinable function
from a mask.

In contrast to most other wavelet related works we do not require that the mask sum is 1. This allows
gives us a little more freedom but is certainly more dangerous.

2.2.26 Definition. If ϕ is refinable with respect toh and(h, g) is a complementary filter pair, then the
functionψ with ψ ∈ R→ R which is a linear combination of integral translates ofϕ, i.e.

ψ = 2 · (g ∗ ϕ) ↓ 2 (2.2.10)

alternatively ∀t ∈ R ψ(t) = 2 ·
∑
k∈Z

gk · ϕ(2 · t− k)

is called awavelet functionof a multi-scale analysis.
If g is used for the analysis transform thenψ is called theprimal wavelet. Analogously the wavelet

with respect to the dual wavelet mask̃ψ is called thedual wavelet function.

Figure2.11shows how a discrete wavelet is assembled of translated versions of the generator function.

2.2.27 Lemma.
Prerequisite. The functionϕ is refinable with respect toh and it is integrable.
Claim. If the integral ofϕ is different from zero then its refinement mask sums up to1.
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Figure 2.11: Build a wavelet from a generator: Wavelets of the biorthogonal wavelet basis
CDF-3,3 and of the orthogonal DAUBECHIES-2 basis

Proof.

ϕ = 2 · (h ∗ ϕ) ↓ 2∫
R
ϕ = 2 ·

∫
R

(
(h ∗ ϕ) ↓ 2

)
=
∫

R
(h ∗ ϕ)

=
∑

h ·
∫

R
ϕ

1 =
∑

h ∨
∫

R
ϕ = 0

2.2.28 Lemma.
Claim. If a functionϕ is differentiable and refinable with respect toh then its derivative is refinable with
respect to2 · h.

Proof.

ϕ = 2 · (h ∗ ϕ) ↓ 2
ϕ′ = 2 · ((h ∗ ϕ) ↓ 2)′

= 2 · 2 · ((h ∗ ϕ)′ ↓ 2)
= 2 · (2 · h ∗ ϕ′) ↓ 2

Section2.2.5gives an example of a refinable function which both has integral zero and is the derivative
of another refinable function.

2.2.29 Remark.According to a suitably generalised notion of refinement to distributions the DIRAC im-
pulse is refinable with respect toδ. Then itsj-th derivative must be refinable with respect to2j · δ. The
power functiont 7→ tj is refinable with respect to2−j−1 · δ. The truncated power functiont 7→ tj+ is re-
finable with respect to the same mask. This is related because the truncated power functions are intuitively
antiderivatives of the DIRAC impulse.

2.2.30 Theorem.
Prerequisite. Let ϕ0 andϕ1 be refinable functions with respect to the masksh0 andh1, respectively. The
convolution of both functionsϕ0 ∗ ϕ1 must exist.
Claim. The functionϕ0 ∗ ϕ1 is refinable with respect toh0 ∗ h1.
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Proof. We show thatϕ0 ∗ ϕ1 fulfils the refinement condition with respect toh0 ∗ h1:

ϕ0 ∗ ϕ1 =
(
2 · (h0 ∗ ϕ0) ↓ 2

)
∗
(
2 · (h1 ∗ ϕ1) ↓ 2

)
= 4 ·

(
(h0 ∗ ϕ0) ↓ 2

)
∗
(
(h1 ∗ ϕ1) ↓ 2

)
(1.2.5)

= 2 ·
(
(h0 ∗ ϕ0) ∗ (h1 ∗ ϕ1)

)
↓ 2

= 2 · (h0 ∗ h1 ∗ ϕ0 ∗ ϕ1) ↓ 2

2.2.31 Lemma.
Claim. The refinement relation remains valid after discretisation.

Proof.

ϕ = 2 · (h ∗ ϕ) ↓ 2
Qϕ = Q(2 · (h ∗ ϕ) ↓ 2)

= 2 · (Q(h ∗ ϕ)) � 2
= 2 · (h ∗Qϕ) � 2

It will be called thediscrete refinement relation.

Since we need the term(h ∗ x) � 2 frequently including nested forms we will introduce an operator for
it.

2.2.32 Definition. For a given maskh from `0 (Z) we define the linear operatorT h as follows

T hx = (h ∗ x) � 2

2.2.33 Remark.The operatorsRh andT h are similar. Intuitively spokenRh let a filter mask grow from
inside, that is the mask is stretched and then convolved withh. By way of contrastT h applies the filterh
to the outside of the input filter and then the result is shrunk. Both operators are designed in such a way
that simple iteration (operator power) makes sense. For instance if we letRh grow from the outside we
would need a parameter specifying the current level of refinement.

2.2.34 Remark.T h is a linear operator which can be represented by an infinite matrix. We will later
consider eigenvalues and eigenvectors. But the length of an eigenvector must not be changed byT h. So
what lengths can a finite eigenvector have? Letx be an eigenvector.

λ · x = T hx
= (h ∗ x) � 2

ixx = ix((h ∗ x) � 2)
min(ixx) = min(ix((h ∗ x) � 2))

=

⌈
min(ixh) + min(ixx)

2

⌉
2 ·min(ixx) = min(ixh) + min(ixx) + (−min(ixh)−min(ixx)) mod 2

min(ixx) = min(ixh) + (−min(ixh)−min(ixx)) mod 2
max(ixx) = max(ixh)− (max(ixh) + max(ixx)) mod 2

This means that the index interval of an eigenvectorx starts atmin(ixh) or min(ixh) + 1 and ends at
max(ixh) or max(ixh) − 1. Thereforeixx ⊆ ixh and for considerations of eigenvectors we can restrict
the infinite matrix to a finite square matrix of size1 + deg h.
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2.2.35 Definition. For a given maskh from `0 (Z) whereν is the smallest index of any non-zero entry
(ν = min(ixh)) andκ the biggest one (κ = max(ixh)), we will call the matrixTh with Th ∈ R{ν,...,κ}2

and

(Th)j,k = h2·j−k

Th =



hν
hν+2 hν+1 hν
hν+4 hν+3 hν+2 hν+1 hν

...
...

...
...

...
...

hκ hκ−1 hκ−2 hκ−3 hκ−4

hκ hκ−1 hκ−2

hκ


thedyadic band matrixof h.

The special matrix2 · Th∗h∗ is called thetransition matrixof h [SN97].

2.2.36 Theorem.
Prerequisite. The filtersh, h̃ are the low-passes of a perfect reconstruction filter bank, that is they fulfil
2 · (h ∗ h̃) � 2 = δ. The functionsϕ andϕ̃ are refinable with respect toh andh̃, respectively. They are also
normalised to

〈
ϕ, ϕ̃∗

〉
= 1. The matrix2 · Th∗eh has the single eigenvalue 1.

Claim. The basis forV0 consisting of the translated primal generatorsϕ is orthogonal to the basis of
adjoint dual generators̃ϕ in the sense

∀k ∈ Z
〈
ϕ, ϕ̃∗ → k

〉
=

1 : k = 0
0 : otherwise

.

Proof. We must show that

Q(ϕ ∗ ϕ̃) = δ (2.2.11)

in other words:ϕ ∗ ϕ̃ must be aninterpolating function.
Due to Theorem2.2.30the functionϕ ∗ ϕ̃ is refinable with respect toh ∗ h̃. Because of Lemma2.2.31

for the discretised functionΦ (Φ = Q(ϕ ∗ ϕ̃)) the discrete refinement relation

Φ = 2 · (h ∗ h̃ ∗ Φ) � 2

holds.
We verify thatΦ = δ is a solution of this refinement equation.

2 · (h ∗ h̃ ∗ δ) � 2 = 2 · (h ∗ h̃) � 2
(2.2.6)

= δ

The matrixTh∗eh is defined such that2 · Th∗eh · Φ = 2 · (h ∗ h̃ ∗ Φ) � 2. Φ must be an eigenvector of
2 · Th∗eh with respect to the eigenvalue 1. This eigenvalue has multiplicity 1 and this means that there are
no other solutions to the refinement equation.

2.2.37 Remark.The previous theorem can be considered as a light-weight version of the theorem of CO-
HEN, DAUBECHIES, FEAUVEAU [Dau92] which also tells whenϕ andϕ̃ are functions ofL2 (R).

2.2.38 Theorem.
Prerequisite. The primal filter pair(h, g) is complementary, and(h̃, g̃) is the dual filter pair. The functions
ϕ,ψ, ϕ̃, ψ̃ are the corresponding primal and dual generators and wavelets. The generators are normalised
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to
〈
ϕ, ϕ̃∗

〉
= 1. The matrixTh∗eh has the single eigenvalue1.

Claim. The basis of the scaled primal functions is orthogonal to the basis of scaled adjoint dual functions.
That is

∀
{
j, k, j̃, k̃

}
⊂ Z

〈
(ψ → k) ↑ 2j√

2j
,

(
ψ̃
∗
→ k̃

)
↑ 2ej√

2ej
〉

=

1 : j = j̃ ∧ k = k̃

0 : otherwise

∀
{
j, k, j̃, k̃

}
⊂ Z ∧ j ≥ j̃

〈
(ϕ→ k) ↑ 2j√

2j
,

(
ψ̃
∗
→ k̃

)
↑ 2ej√

2ej
〉

= 0

∀
{
j, k, j̃, k̃

}
⊂ Z ∧ j ≤ j̃

〈
(ψ → k) ↑ 2j√

2j
,

(
ϕ̃∗ → k̃

)
↑ 2ej√

2ej
〉

= 0

Proof.
1. Without loss of generality letj ≥ j̃ and setn = j − j̃.〈

(ψ → k) ↑ 2j√
2j

,

(
ψ̃
∗
→ k̃

)
↑ 2ej√

2ej
〉

=

〈
(ψ → k) ↑ 2n√

2n
, ψ̃

∗
→ k̃

〉

=

〈
ψ ↑ 2n√

2n
→ (2n · k) , ψ̃

∗
→ k̃

〉
(a) Case:n = 0

ψ ∗ ψ̃ = 2 · (g ∗ g̃ ∗ ϕ ∗ ϕ̃) ↓ 2

Q(ψ ∗ ψ̃) = 2 ·Q
(
g ∗ g̃ ∗ (ϕ ∗ ϕ̃)

)
� 2

= 2 ·
(
g ∗ g̃ ∗Q(ϕ ∗ ϕ̃)

)
� 2

(2.2.11)
= 2 · (g ∗ g̃) � 2

(2.2.7)
= δ

(b) Case:n > 0
ψ ↑ 2n√

2n
∗ ψ̃ = 2−n/2 ·

(
Rn2·hg ∗ g̃ ∗ ϕ ∗ ϕ̃

)
↓ 2

= 2n/2 ·
(
Rnhg ∗ g̃ ∗ ϕ ∗ ϕ̃

)
↓ 2

Q

(
ψ ↑ 2n√

2n
∗ ψ̃

)
= 2n/2 ·Q

(
Rnhg ∗ g̃ ∗ ϕ ∗ ϕ̃

)
� 2

= 2n/2 ·
(
Rnhg ∗ g̃ ∗Q(ϕ ∗ ϕ̃)︸ ︷︷ ︸

δ

)
� 2

= 2n/2 ·
(
g̃ ∗ h ∗

(
Rn−1
h g

)
↑ 2
)

� 2

(1.2.2)
= 2n/2 · (g̃ ∗ h) � 2︸ ︷︷ ︸

0

∗ Rn−1
h g

(2.2.8)
= 0

2. Let n = j − j̃.

Q

(
ϕ ↑ 2n√

2n
∗ ψ̃

)
= 2n/2 · (g̃ ∗ h) � 2 ∗ Rnhδ

(2.2.8)
= 0
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Figure 2.12: Dual basis functions of the CDF-3,3 wavelet

3. This is analogous to the previous case.

Our goal was to find the connection from the discrete wavelet transform back to the continuous one.
The previous steps have shown how the discrete filters are related to continuous functions. But what about
the signal? If we turn the discrete signalx into a function where each coefficient ofx is the amplification
of small scaled translated generatorsϕ̃, i.e.x ∗ ϕ̃, then the continuous wavelet transform with respect toψ
with subsequent sampling is the discrete wavelet transform.

If we want to restrict the sampling to a finite number of scales we have to complement the largest scale
of wavelets with generators of this scale. Figure2.12shows some basis functions for a discrete transform
interpreted in terms of continuous basis functions.

2.2.39 Theorem.
Prerequisite. Let x be a discrete signal,x ∈ `0 (Z). Additionally the preconditions of Theorem2.2.38
hold.
Claim. The discretised continuous wavelet transform with respect to a discrete wavelet basis can be
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obtained by discrete convolution with the refined wavelet maskRj2·hg (see Definition2.2.1).

∀j ∈ N ∀k ∈ Z Wψ
∗ (x ∗ ϕ̃) (2j)(2j · k) = 2j/2 ·

(
x ∗ Rjhg

)
2j ·k

Proof. We verify that the claim is even true if down-sampling is omitted, i.e. if we sample at each integral
k instead of2j · k.

Wψ
∗ (x ∗ ϕ̃)

(
2j
)

=
ψ ↑ 2j√

2j
∗ x ∗ ϕ̃

= 2j/2 · Rjhg ∗ ϕ ∗ x ∗ ϕ̃

Q

(
Wψ

∗ (x ∗ ϕ̃)
(
2j
))

= 2j/2 · x ∗ Rjhg ∗Q(ϕ ∗ ϕ̃)︸ ︷︷ ︸
δ

Q

(
Wψ

∗ (x ∗ ϕ̃)
(
2j
)
↓ 2j

)
= 2j/2 ·

(
x ∗ Rjhg

)
� 2j

The last equation is equivalent to the claim.

2.2.5 Generalisations

The main features of the discrete wavelet transform are the bijection (i.e. no redundancy and unique rep-
resentation) and fast computation (linear time if the size of the filter is neglected). The discrete wavelet
transform works on exponentially graded scales and a resolution which decreases with increasing scale.
This basic method can be extended in many ways. Probably every obvious generalisation of this scheme is
already proposed and investigated. We want to acknowledge some of them here.

Translation invariant transform

In this work we started with the translation invariant wavelet transform and came to the wavelet transform
with down-sampling. But usually the translation invariant transform is considered as an extension of the
critically sampled transform. We already got to know the transform where the sampling rate is the same
for all scales, but in Section4.3.2of this work we will also motivate a transform where the sampling rate
is increased by a constant factor for all scales (in our setting 2).

The first variant can also be considered as a discrete wavelet transform applied to shifted versions of
the signal. Wavelet coefficients from different transforms can then be merged to a total translation invariant
coefficient set but several coefficients in fine scales are present multiple times. [CD95, CL01]

Matching pursuits

Translation invariant transforms tend to produce a high amount of output. That is why the question arose
how to reduce the output data size while retaining the translation invariance. The idea is to replace the
basis of wavelets by aframe, intuitively spoken an “over-complete RIESZ basis”. In contrast to a basis
the functions of a frame need not to be linearly independent and thus the expansion of a signal into a
frame is not necessarily unique. This gives us more freedom of choosing appropriate frame members for
representing a signal.

We consider the frame of all wavelets shifted at the fine scale but select wavelets from it depending on
the signal content. A simple idea is to transform a signal translationally invariant and keep only the portion
of the largest coefficients. The problem is that we do not work with a basis but with a frame. That is the
wavelets correlate with each other and thus close to each large coefficient some other large coefficients may
exist.

An improved algorithm respects this problem: Perform a translation invariant transform and keep only
a small portion of the highest coefficients. Transform the signal back but amplify it in a way that each
coefficient is turned into a wavelet with its normal amplitude. This differs from the normal translation
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invariant reconstruction because there it is assumed that many coefficients can contribute energy to one
wavelet. The reconstructed signal should be an approximation to the original signal. Then subtract the
reconstructed signal from the original one and repeat the approximation for the residue signal.

This algorithm is calledmatching pursuit[MZ93, Mal99] and the related theory explains how many
large coefficients should be chosen in one go and when to abort the iteration. Redundancy in the wavelet
frame can also be achieved by different kinds of wavelets. By providing a wavelet dictionary which consists
of both tonal and transient audio atoms you can split a signal into these components.

Multichannel transform

Another approach addresses the graduation of scales. For instance if we down-sample the signal by a
factor of 3 at each level we obtain two high-band signals per level and the scales are powers of 3. In an
n-channel transform smooth generators can be produced by masks very similar to those popular for the
original 2-channel transform (we anticipate Section4.2here), namely(1, 1, . . . , 1)︸ ︷︷ ︸

n components

.

Then-channel transform is determined by ann×n polyphase matrix. The transform can be considered
as splitting the signal inton interleaved slices, then apply a matrix-vector-convolution of the polyphase
matrix and the slices vector. The perfect reconstructability condition remains the same: The polyphase
determinant must be a monomial. This implies that the polynomials of each column must be relatively
prime.

A lifting decomposition (an anticipation, again, see Section3.2) is possible but even more ambiguous.
We can use the EUCLIDean algorithm to find row additions that cancel, say, the left bottom element of
the polyphase matrix. Then we proceed eliminating the element above and so on. To make sure that
the top left element is non-zero you can either swap some rows before the elimination (the pivot strategy
of the GAUSS elimination) or swap the rows on every lifting step (the lifting strategy). This procedure
can be continued to other columns until we obtain an upper triangular polyphase matrix. Because of the
determinant being a monomial all elements on the diagonal are monomials thus the elements in the last
column can be eliminated byn− 1 scaled additions of the bottom row to the rows above. Then we proceed
with the columns to the left until we obtain a diagonal matrix. The lifting decomposition is rather much
like the GAUSSelimination. The main difference is that due to the missing division we need more than one
step for eliminating one matrix element.

If a square polyphase matrix poses in principle no problem – what about a rectangular one? A rectan-
gular polyphase matrix is of interest for a redundant transform like the one presented in Section4.3.2. In
general we can neither compute a determinant of a rectangular matrix nor an inverse. But we can explore
conditions to reconstruct atomic signals, say a unit vector containing one monomial. If the polyphase ma-
trix is

(
hi,j : (i, j) ∈ {0, . . . , n− 1} × {0, . . . ,m− 1}

)
with n ≥ m (equal or more rows than columns)

and the signal vector is(δ, (0) , . . . , (0))︸ ︷︷ ︸
m components

then the transformed signal is(h0,0, . . . , hn−1,0). Let the recon-

struction polyphase matrix be
(
h̃j,i : (j, i) ∈ {0, . . . ,m− 1} × {0, . . . , n− 1}

)
then the reconstructed

signal ish̃0,0 ∗ h0,0 + · · ·+ h̃0,n−1 ∗ hn−1,0 which shall beδ, again. That is both sets
{
h0,0, . . . , hn−1,0

}
and

{
h̃0,0, . . . , h̃0,n−1

}
must fulfil a BEZOUT equation. Since we consider univariate polynomials, this is

equivalent to the condition that a monomial is a greatest common divisor of the filters. This condition is
necessary but certainly not sufficient.

A necessary and sufficient condition for a (not necessarily square) polyphase matrixP being invertible
is that if there is somem × n transformation matrixT such that the convolutional matrix productT ~ P
has a unit determinant. The condition is sufficient since with

P̃ = (T ~ P )−1 ~ T

P̃ is a left inverse ofP because

P̃ ~ P = (T ~ P )−1 ~ T ~ P

= I .
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↑ m ∗h � n . . . ↑ n ∗h̃ � m

+

? . . . ?

Figure 2.13: One level of a discrete wavelet transform based on fractional refinement

Conversely, the condition is necessary since if there is a left inverseP̃ of P then there is a transformation
T , namelyT = P̃ , which satisfies̃P = (T ~ P )−1 ~ T .

A kind of a permutation matrix is a very simple choice forT . More precisely,T ~P is a sub-matrix of
P generated by selecting some rows from it and(T ~ P )−1 ~ T puts the rows of the inverted sub-matrix
back to where they were taken fromP . A transformation of this form is not possible for every invertible
P . Even more it would not make any use of the redundant data generated by the application ofP .

A more interesting choice isT = PT because theñP is a pseudo inverse (or MOORE-PENROSE in-
verse). [Sto99, Theorem 4.8.5.1] Consequently a monomial determinant ofPT ~P is a sufficient condition
for the existence of a MOORE-PENROSEinverse in the ring of LAURENT polynomials. This is also a nec-
essary condition according to the following reasoning. Since determinants are defined only for square
matrices the proof of Lemma2.2.6cannot be adapted immediately. We will need two properties of pseudo
inverses in order to derive the necessary condition.

P̃ ~ P = I
∣∣∣ pseudo inverse law:P = P ~ P̃ ~ P

P̃ ~ P ~ P̃ ~ P = I
∣∣∣ pseudo inverse law:P ~ P̃ = (P ~ P̃ )T

P̃ ~ P̃T ~ PT ~ P = I

det(P̃ ~ P̃T ) ∗ det(PT ~ P ) = δ .

Consequently bothdet(P̃ ~ P̃T ) anddet(PT ~ P ) must be monomials.
But the existence of a pseudo inverse is not necessary for perfect reconstruction. E.g. the polyphase

matrixP with P =

(
(1,−1)
(1, 1)

)
has a left inverse12 ·

(
(1) (1)

)
but det

(
PT ~ P

)
= (2, 0, 2) is not a

unit.
As described above a left invertible polyphase matrix can be decomposed into lifting steps with the

modified GAUSS elimination. The upper triangular matrix generated by the GAUSS elimination (in a re-
dundant transform, i.e.n > m, the lowern − m rows are zero) can be inverted from the left only by a
(non-square) upper triangular matrix. We conclude that the elements on the diagonal must be monomials.
Thus the second phase of the elimination works which turns the triangular matrix into one of diagonal
shape.

Multichannel transforms are more popular for multi-dimensional filters. (See below)

Fractional refinement

An integer factor between scales is often too large. How can one achieve fractional scale factors?
If we want a scale factor ofnm then the computation of the low-pass band becomes

y = (h ∗ (x ↑ m)) � n

(cf. Figure2.13).
For complementing the low-pass band with a high-pass band we can use the multichannel approach of

the previous section with square polyphase matrices. In contrast to the multichannel approach we do not
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choose a single channel as low-pass channel which is cascaded but we usem channels for the low-pass
cascade from a total ofn channels. From the computation ofy follows

y → k � m = (h ∗ (x ↑ m)) � n→ k � m

= (h ∗ (x ↑ m)→ (n · k)) � m � n
∣∣ (1.2.2)

= (h→ (n · k) � m ∗ x) � n | Lemma2.2.3

=
n−1∑
j=0

(h→ (n · k −m · j) � m � n) ∗ (x→ j � n)

which let us choose the low-pass portion of the polyphase matrixP and the sliced input signalx according
to

∀k ∈ {0, . . . ,m− 1} ∧ j ∈ {0, . . . , n− 1} Pk,j = h→ (n · k −m · j) � (n ·m)
∀j ∈ {0, . . . , n− 1} xj = x→ j � n .

E.g. for a ratio of 3/2 we use a3× 3 polyphase matrix. The input signalx and the output signal sequence
y are connected byy0

y1

y2

 =

 h � 6 h→ −2 � 6 h→ −4 � 6
h→ 3 � 6 h→ 1 � 6 h→ −1 � 6

? ? ?

~

 x � 3
x→ 1 � 3
x→ 2 � 3


Now,y0 andy1 are merged to a total low-pass band, preciselyy0 ↑ 2+y1 ↑ 2← 1. This signal is then fed
to the next level of the transform. With a square matrix this transform is not redundant. However it is easy
to extend this method to redundancy by switching to non-square polyphase matrices. Perfect reconstruction
is treated exactly as in the previous section about a multichannel transform.

It remains the question how this kind of subband coding can be interpreted in terms of wavelets. An
essential difference to the transformations mentioned above is that the wavelet and generator functions
do not have uniform shapes. The question arises how different the shapes are and how to make them
approximately uniform. The computation of the low-pass band suggests that the refinement equation (2.2.9)
becomes

ϕ =
n

m
· (h ∗ (ϕ ↑ m)) ↓ n

for fractional refinement. But this cannot be true since the shapes of the shifted generators differ [CD93].
Instead we can state a refinement for the sequenceϕ of all generators.

ϕk =
n

m
·

∑
j∈Z

hm·j−n·k · ϕj ↑ m

 ↓ n
Another central question here is how to assert smooth wavelets. (We anticipate the treatise in Sec-

tion 4.2.) In [RB97] it is shown that similar to the case of integral refinement factors masks of the form
(1, 1, . . . , 1)︸ ︷︷ ︸
n components

lead to smooth generators. Heren is the numerator of the (cancelled) scale factorn
m . Expe-

rience shows that the shape of smooth wavelets and generators depend only slightly on their position.

Multi-dimensional wavelets

The next generalisation presented here is the increasing of dimensions of the signal. So far we considered
only functions fromR → R and discrete signals from̀0 (Z). This can be extended tod dimensions,

namelyRd → R and`0
(
Zd
)

. If we want to treat images it isd = 2, for video streams or true 3D images

it is d = 3.
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The most simple extension is a wavelet transform which is applied separately to some dimensions. For
an image this would mean to apply a one-dimensional wavelet transform to each row and then to each
column. If the rows are transformed with generatorϕ0 and waveletψ0 and the columns are transformed
with generatorϕ1 and waveletψ1 then the composed transform can be considered as a transform with
respect to the two-dimensional generatorϕ0 ⊗ ϕ1 and the waveletsψ0 ⊗ ϕ1, ϕ0 ⊗ ψ1, ψ0 ⊗ ψ1.

The next generalisation is to leave tensor product functions and to turn to general higher dimensional
functions, namely fromRd → R. With a refinement by the factork for all dimensions we have akd × kd
polyphase matrix containingd-dimensional filters, i.e. polynomials with respect tod variables. For a square
matrix the necessary and sufficient condition for invertibility is again that the determinant must be a unit.

For multivariate polynomials the connection between the greatest common divisor and the solution of
the BEZOUT equation does no longer hold. More precisely, for multivariate polynomialsx, y, p, q, r the
equation

x ∗ p+ y ∗ q = r

preserves that a greatest common divisor ofp andq must divider, too, because any common divisor of
p andq dividesr. But it is no longer true that a greatest common divisor ofp andq can be expressed by
a linear combination of them. For instance the two-dimensional masks (i.e. the two-variate polynomials)(

1 0
0 1

)
and

(
0 1
1 0

)
are relatively prime, but their greatest common divisor

(
1
)

cannot be represented

by a linear combination of them.
This consideration shows that a necessary condition for perfect reconstruction is still that the elements

in a column (or a row) of the polyphase matrix must be relatively prime. By expanding a determinant
with respect to a column it becomes clear that it must be possible to represent a monomial by a linear
combination of the elements of this column. But here this condition is stronger than the request for relative
primes. An alternative formulation is that the ideal spanned by all elements of a column must contain a
monomial (and thus all polynomials). A formulation with GROEBNERbases like “the reduced GROEBNER

basis of the column elements must be{1}” is not so obvious because we have LAURENT polynomials
rather than ordinary ones. Approaches for not only biorthogonal but even orthogonal filter banks are also
more involved for higher dimensions [Maa96].

The next generalisation concerns the shrink operation. Beyond uniform shrinking in each dimension in
higher dimensions it is possible to transform affinely. We will redefine the shrink operation for matrices as
factors.

∀t ∈ Rd ∧M ∈ Rd×d (f ↓M)(t) = f(M · t)

Analogous to Definition2.2.24this let us define refinable functions with respect to a general (but integer)
dilation matrixM ,M ∈ Zd×d [BW92, Kla01] and a higher dimensional maskh, h ∈ `0

(
Zd
)

.

ϕ = detM · (h ∗ ϕ) ↓M
alternatively ∀t ∈ Rd ϕ(t) = detM ·

∑
k∈Zd

hk · ϕ(M · t− k)

The multiplication withM maps the gridZd to an affinely distorted gridM · Zd. The columns of
M contain the vectors of theparallelepipedthe half-opened box[0, 1)d is mapped to. Thus the shrinking
operation reduces a parallelepiped to this unit box. Each boxk + [0, 1)d with k ∈ Zd contains exact

one integral point (#
(
(k + [0, 1)d) ∩ Zd

)
= 1) whereas the transformed boxM · (k + [0, 1)d) contains

|detM | integral points (#
(
M · (k + [0, 1)d) ∩ Zd

)
= |detM |). This reduction factor means that the

factor spaceZd/(M · Zd) contains|detM | distinct moved variants ofM · Zd. This is also the number of
input and output channels and the size of the polyphase matrix (cf. Figure2.14).

Multiwavelets

The multiwavelettransform processes a certain number of signals and generates the same number of
wavelet transforms. But it is not only the parallel application of some wavelet transforms to some sig-
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Figure 2.14: Refinement with a general dilation matrix: The matrix

(
3 1
2 4

)
represents the

basis vectors(3, 2) and(1, 4) which span the dotted lattice. All crosses are images with respect
to the dilation of points within the unit box. The absolute value of the determinant is 10, thus
there are 10 crosses in the half-open parallelogram. (One cross coincides with the(0, 0) dot.)

nals but the wavelet transforms are interleaved. It is useful to put the filters for the generators into a matrix
H from `0 (Z)n×n and setup a matrix refinement equation for the vectorΦ of generators (Φ ∈ (R→ R)n).
Be careful to not mix this up with the polyphase or modulation matrix. Analogously there is a matrixG
describing the wavelets in a vectorΨ.

Φ = (↓ 2) ◦ (H ~ Φ)
Ψ = (↓ 2) ◦ (G~ Φ)

Note that we use the function composition here to apply a function to all elements of a vector as
described in the introduction (Section1.2.1).

Each level of the transform can be described by a polyphase matrix which is organised in blocks. IfX
is the vector of input signals,Y0 the vector of low-pass outputs andY1 the vector of high-pass outputs then
one transformation step can be expressed by(

Y0

Y1

)
=

(
(� 2) ◦H (� 2) ◦ (← 1) ◦H
(� 2) ◦G (� 2) ◦ (← 1) ◦G

)
~

(
(� 2) ◦X

(� 2) ◦ (→ 1) ◦X

)
.

This representation clearly shows the connection to the multichannel wavelet transform (see above).
An n-wavelet transform withm channels from whichk low-pass channels are chosen for cascading can be
considered as a scalar wavelet transform withn ·m channels from whichn · k are cascaded. [RN96]

The interpretation of the discrete input signals in terms of multiwavelets is that each signal contains
coefficients of another generator function. If you interpret a single signal as a sequence of coefficients for
a cycling list of certain generators then the multiwavelet transform becomes useful also for single signals.
If the generators are equal (or at least do not differ too much) then it is reasonable to simply split a single
signal inton slices before applying the multiwavelet transform.

By dropping the restriction of uniform shapes of all versions of generators and wavelets in a basis some
combinations of features like finite support, orthogonality, symmetry, and interpolation are possible which
are impossible for the plain DWT. [GHM94, Sel99] The deviations in shape may be even reduced to a
negligible amount.

Recursive filters

There is also an extension which is not related to the structure of the transform but to the nature of the
wavelets. A criterion for perfect reconstruction is that the polyphase matrix has a monomial as determinant.
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This is necessary because in the ring of LAURENT polynomials only monomials are units. This restriction
can be lifted by allowing fractions of filters. Division of filters means polynomial division, in general this
results in a series. Because the filters are LAURENT polynomials the division is ambiguous. Polynomial
division is known asrecursive filter[Ham89] or infinite impulse response filter(shortIIR filter) [Zöl02] in
the signal processing community or as the solution of a lineardifference equationwith constant coefficients
to the math community [KP01].

Fractions of filters provide more degrees of freedom. For example with plain LAURENT polynomials
only the generators of a discrete wavelet transform are refinable functions, but a wavelet becomes refinable
when fractions of filters are allowed for refinement. [SSZ99]

If (h, g) is the filter pair of a discrete wavelet transform whereϕ is refinable with respect toh andψ
is the wavelet associated withg thenψ ↑ 2 is refinable with respect to(h ∗ (g ↑ 2)) /∗ g. The form of this
expression reveals how to derive it: We expandψ ↑ 2 into generators according to the wavelet definition,
then we lift the generator one scale higher, then we go back to the wavelet, which is now also one scale
larger, namelyψ ↑ 4.

ψ = 2 · (g ∗ ϕ) ↓ 2
ψ ↑ 2 = 2 · g ∗ ϕ

(g ↑ 2) ∗ h ∗ (ψ ↑ 2) = 2 · (g ↑ 2 ∗ g ∗ h ∗ ϕ)
(g ↑ 2) ∗ h ∗ (ψ ↑ 2) = g ∗ (g ↑ 2) ∗ (ϕ ↑ 2)

becauseψ ↑ 4 = 2 · (g ↑ 2) ∗ (ϕ ↑ 2)
2 · (g ↑ 2) ∗ h ∗ (ψ ↑ 2) = g ∗ (ψ ↑ 4)

2 · (g ↑ 2 ∗ h) /∗ g ∗ (ψ ↑ 2) = ψ ↑ 4

It is interesting in which case a wavelet is also refinable with respect to a finite (non-recursive) filter,
that is in which cases cang ↑ 2 ∗ h be divided byg. If the filter bank allows perfect reconstruction then
h andg are relatively prime, that isg must divideg ↑ 2. Thus alsog− must divide(g ↑ 2)− which is
equal tog ↑ 2. Thus lcm(g, g−) must divideg ↑ 2. Because of perfect reconstruction alsog andg−
must be relatively prime which implieslcm(g, g−) = g ∗ g−. The polynomialsg ∗ g− andg ↑ 2 have
the same degree. It follows that they are equal apart from a weighting. We can splitg into linear factors
which leads to an 1:1 correspondence between linear factors ofg andg− and quadratic factors ofg ↑ 2. If
x ∗ x− = c · x ↑ 2 andy ∗ y− = d · y ↑ 2 then

(x ∗ y) ∗ (x ∗ y)− = x ∗ x− ∗ y ∗ y−
= c · d · x ↑ 2 ∗ y ↑ 2
= c · d · (x ∗ y) ↑ 2 .

For which linear factors does the condition hold?

(1, α) ∗ (1,−α) != c · (1, 0, α)(
1, 0,−α2

)
= c · (1, 0, α)

c = 1
α ∈ {0,−1} .

For α = 0 the linear factor is a constant factor. This means that masks of refinable wavelets must be
convolutional powers of the mask(1,−1).

An example for this observation is that the HAAR wavelet (mask(1,−1)) is refinable with re-
spect to the doubled mask12 · (1, 2, 1) of the hat generator function (cf. Figure2.15). We verify that(

1
2 · (1, 1) ∗ ((1,−1) ↑ 2)

)
/∗ (1,−1) = 1

2 · (1, 2, 1). Because of Lemma2.2.28this is no surprise since

the HAAR wavelet is in some sense the derivative of the hat function. (To be precise the HAAR wavelet is
theweak derivativeof the hat function.)
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Figure 2.15: Refinement of a wavelet: The linear B-spline (hat function) and the HAAR wavelet
are refinable with respect to essentially the same mask. The mask for the HAAR wavelet is
amplified by a factor of 2 compared to that of the hat function. The HAAR functions are slightly
distorted in order to reveal overlapping lines.
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Chapter 3

Matching wavelets

In this chapter we will derive a main result of this work: A method for designing a wavelet that matches a
given pattern. This is somehow similar to previous work of the author [Thi01]. Again, the lifting scheme
plays a central role. The application in [Thi01] is image compression and the approach is to generate image
specific wavelet filters which minimise the energy on the high-pass bands before quantisation. The wavelet
filter is adapted separately for each level of the transformation.

Our current goal is different: We want to compute one wavelet filter bank for a wavelet that matches a
pattern. The designed wavelet is the same for all levels disregarding dilations. This constraint can be easily
dropped while retaining perfect reconstructability but it causes problems when it comes to the numerical
analysis of the reconstruction.

At the end of the chapter we will know how to design matched wavelets efficiently. This allows us a
discrete wavelet transform with respect to a matched wavelet with perfect reconstruction and the typical
efficiency of the discrete transform.

3.1 Refinable functions

Refinable functions as introduced in Definition2.2.24originate from considering the discrete wavelet trans-
form as discretised continuous wavelet transform. Discrete wavelets are linear combinations of integral
translates of refinable functions. Thus it is worth exploring properties of refinable functions first.

3.1.1 Construction of refinable functions

Until now we have only considered a lose connection of a refinable function with a refinement mask. We
will now construct refinable functions from refinement masks.

The cascade algorithm

Thecascade algorithmuses the refinement relation for the approximation of the shape of a refinable func-
tion. The refinement relation

ϕ = 2 · (h ∗ ϕ) ↓ 2

is interpreted as recursively defined function sequence with

ϕj+1 = 2 · (h ∗ ϕj) ↓ 2 .

According to [Str96, Theorem 3 and 4] the iteration converges with respect to theL2 (R) norm if
∀t ∈ R

∑
n∈Z ϕ0(t − n) = 1 and if 2 · Th has the eigenvalue1 and all other eigenvalues have a smaller

absolute value.

57
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The cascade algorithm can be used to approximate the shape of refinable functions. We look for a
function which is refinable with respect toh. For simplification we letm = 2 · h. We start with the
characteristic functionχ[0,1) which is clearly an admissible starting function. Afterj iterations we obtain

ϕj = (m ∗ . . . (m ∗ (m ∗ ϕ0) ↓ 2) . . . ) ↓ 2
= (Rjmδ ∗ ϕ0) ↓ 2j .

This can be verified with the Definition2.2.1ofRm:

Base case: ϕ0 = R0
mδ ∗ ϕ0

Recurrence: ϕj+1 =
(
Rjmδ ∗ ϕ1

)
↓ 2j

=
(
Rjmδ ∗ (m ∗ ϕ0) ↓ 2

)
↓ 2j

=
(
Rjmδ ↑ 2 ∗m ∗ ϕ0

)
↓ 2j+1

=
(
Rm

(
Rjmδ

)
∗ ϕ0

)
↓ 2j+1

=
(
Rj+1
m δ ∗ ϕ0

)
↓ 2j+1

This means thatϕj is a linear combination of translates in a2−j-lattice ofϕ0 ↓ 2j which are rather

narrow functions. Thus the shape of
(
Rjmδ ∗ ϕ0

)
↓ 2j is dominated byRjmδ and you can argue that the

shape ofRjmδ approaches that ofϕ ↑ 2j for increasingj.
The cascade algorithm can be implemented as recursion

x0 = δ

xj+1 = xj ∗ (m ↑ 2j) .

The shape of the corresponding wavelet can be approximated byxj ∗ (2 · g ↑ 2j).
There is an alternative approach for the approximation which leads to a slightly different algorithm. A

single coefficient in the wavelet transform represents a generator or wavelet function. You can reconstruct a
generator or wavelet approximation by reconstructing (Corollary2.2.11) a wavelet transform that is entirely
zero except for one coefficient.

x0 = δ

xj+1 = (xj ↑ 2) ∗m

This method is equal to applying the refinement operator multiple times yieldingxj+1 = 2 · Rjmh for the
generator and2 · Rjmg for the wavelet.

The difference between these two algorithms is the same as the one mentioned in Remark2.2.33.
All figures (including of course Figure3.1) of refinable functions in this thesis were prepared with this

“inner” cascade algorithm.

The infinite product

The “inner” cascade algorithm can be performed in the frequency domain, too. This is especially useful
for exploring the smoothness of refinable functions. In the FOURIER domain the convolution becomes a
multiplication and convergence can be considered pointwise.

ϕ = 2 · (h ∗ ϕ) ↓ 2

ϕ̂ = (̂h ∗ ϕ) ↑ 2

= (ĥ · ϕ̂) ↑ 2

ϕ̂(ξ) = ĥ

(
ξ

2

)
· ϕ̂
(
ξ

2

)
Insert the refinement relation for̂ϕ repeatedly. Assume that̂ϕ is continuous at 0.
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Figure 3.1: The “inner” cascade algorithm for the Daubechies-2 wavelet basis: The left column
shows approximations of the generator, that is2 · Rjmh, and the right column shows the wavelet
approximation2 · Rjmg both at2−j−1 rasters forj ∈ {0, . . . , 4}
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ϕ̂(ξ) = ϕ̂(0) ·
∞∏
j=1

ĥ
(
2−j · ξ

)
Note that the last step yielding the infinite product is informal. We cannot conclude from an arbitrary

number of substitutions to a limit. We have not derived that the frequency spectrum of every refinable
function can be represented by this product, we only know that every function representable by the infinite
product is refinable. Indeed from Section2.2.5we already know a counterexample: The HAAR wavelet is
refinable with respect to12 · (1, 2, 1) but the sum of the mask coefficients is2 thus the product diverges for
ξ = 0.

3.1.2 Transfer operator

A refinable function is an eigenfunction of the transfer operator as defined in Definition2.2.24. Thus the
filter mask and the dyadic band matrix (Definition2.2.35) are the objects we must consider in order to find
out details about a refinable function.

Evaluating refinable functions for integer arguments

If you discretise the refinement equation on both sides as in Lemma2.2.31you obtain an equation system
whose solution yields the values of the refinable function at integral positions. Letϕ be refinable with
respect toh, and letν be the lower andκ the upper index ofh. Then we obtain

Qϕ = 2 · (h ∗Qϕ) � 2
ϕ(ν)

ϕ(ν + 1)
...

ϕ(κ)

 = 2 · Th ·


ϕ(ν)

ϕ(ν + 1)
...

ϕ(κ)



0 = (2 · Th − I) ·


ϕ(ν)

ϕ(ν + 1)
...

ϕ(κ)

 .

To obtain a solution different from zero the matrix2 · Th − I must be singular, that isTh must have the
eigenvalue1

2 .
Once we have the values for all integral arguments we can obtain the values ofϕ for all dyadic argu-

ments, i.e. all arguments of the formk · 2−j for k ∈ Z andj ∈ N0. For simplicity we use the substitution
m = 2 · h, again.

ϕ ↑ 2 = m ∗ ϕ
Q(ϕ ↑ 2) = Q(m ∗ ϕ)

= m ∗Qϕ

This computation can be iterated, where thejth iteration step is

ϕ ↑ 2j+1 = (m ∗ ϕ) ↑ 2j

Q
(
ϕ ↑ 2j+1

)
= Q

(
(m ∗ ϕ) ↑ 2j

)
= m ↑ 2j ∗Q

(
ϕ ↑ 2j

)
.

By unrolling the iteration we obtain the explicit formula

Q
(
ϕ ↑ 2j

)
= Rjmδ ∗Qϕ .



3.1. REFINABLE FUNCTIONS 61

Evaluating scalar products of refinable functions

The algorithm of the previous section can be re-used for the computation of scalar products between trans-
lates of two functionsϕ0 andϕ1 which are refinable with respect toh0 andh1, respectively. [DM93] It
holds

〈ϕ0 → t0, ϕ1 → t1〉 =
〈
ϕ0, ϕ1 → (t1 − t0)

〉
= (ϕ0 ∗ ϕ1

∗)(t1 − t0) .

Due to Theorem2.2.30the functionϕ0 ∗ ϕ1
∗ is refinable with respect toh0 ∗ h1

∗. With the algorithm
in Section3.1.2the scalar products of all dyadic shifts can be computed irrespective of a constant factor.

Properties of the dyadic band matrix

3.1.1 Theorem.
Claim.

traceT g · traceTh = traceT g∗h

Proof.

traceT g =
∑
j∈Z

gj

= Eg (1)

Eg (1) · Eh (1)
(1.2.4)

= E (g ∗ h) (1)

3.1.2 Lemma.
Claim. For each filterh the filterh ∗ h− has zero coefficients at each odd index.

h ∗ h− = (h ∗ h−) � 2 ↑ 2

Proof.

(h ∗ h−)− = h− ∗ (h−)−
= h− ∗ h
= h ∗ h−

Becausex− = x⇒ x = x � 2 ↑ 2 it follows thath ∗ h− = (h ∗ h−) � 2 ↑ 2.

The determinantdetT g is a homogenous polynomial term with degree1 + deg g with respect to the
variablesgi. Please note the difference in viewingg as a polynomial here! The polynomial termdetT g∗h
consequently is also homogenous with respect to the coefficients ofg andh and is of degree2 ·(1+deg g+
deg h).

3.1.3 Theorem.
Claim. The termdetT g∗h contains the factorsdetT g anddetTh, but with possibly less multiplicity.

∃n ∈ N (detT g · detTh) |
(
detT g∗h

)n
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Proof. Due to HILBERT’s Nullstellensatz [Wei05, HILBERT’s Nullstellensatz] it is enough to show, that
detT g∗h is zero wheneverdetT g or detTh is zero. This way we cannot prove that(detT g · detTh) |
detT g∗h becausedetT g may contain a squared factor wheredetT g∗h contains the same factor only once.

Without loss of generality we provedetT g = 0 ⇒ detT g∗h = 0. The conditiondetT g = 0 means,
thatT g is singular which in turn means that there is a non-zero vectorp with T g · p = 0. This is equivalent
to (g ∗ p) � 2 = 0 whereix p ⊆ ix g. We verify that a vector from the kernel ofT g∗h is h− ∗ p. Indeed it
has the proper index interval, because

ix(h− ∗ p) = ixh− + ix p ⊆ ixh+ ix g = ix(g ∗ h) .

(g ∗ h ∗ (h− ∗ p)) � 2 = ((h ∗ h−) � 2 ↑ 2 ∗ g ∗ p) � 2 | Lemma3.1.2

= (h ∗ h−) � 2 ∗ (g ∗ p) � 2
∣∣ (1.2.2)

= (h ∗ h−) � 2 ∗ 0
= 0

3.1.4 Remark.Assume ap with ix p ⊆ ix g and (g ∗ p) � 2 = 0 then min(ix p) > min(ix g) and
max(ix p) < max(ix g) because the first and the last coefficient ofg ∗ p are products of the first and last
coefficients ofg andp, respectively.

Due to Lemma2.2.3the equation(g ∗ p) � 2 = 0 is equivalent to

g � 2 ∗ p � 2 + (g ← 1) � 2 ∗ (p→ 1) � 2 = 0 .

This is a BEZOUT equation, again. It holds

deg(p � 2) < deg((g ← 1) � 2)
deg((p→ 1) � 2) < deg(g � 2)

becauseg ← 1 has at least two non-zero coefficients more thanp at the left end and the same is valid forg
andp→ 1. This means thatg � 2 and(g ← 1) � 2 have a non-trivial common divisor.

ThusdetT g = 0 if and only if g disallows perfect reconstruction (cf. Corollary2.2.8), regardless
whether it is used as low-pass or as high-pass filter.

This result is already nice but we can improve it considerably. We will now derive a factorisation of
detT g∗h and besides this will yield an efficient computation ofdetT g.

3.1.5 Notation. Until the end of this section we want to consider polynomials with zero as least index
where the leading coefficient need not to be zero. That is(1, 2, 1) and(1, 2, 1, 0) shall be different poly-
nomials. To this end we attach a non-negative integer to each polynomial which tells the highest index
of coefficients to be considered. It induces the domain of the mask, calleddomh. The domaindomh
is a contiguous set of the form{0, . . . , n} with n ≥ 0. The domain must address at least all non-zero
coefficients ofh, i.e.hj 6= 0⇒ j ∈ domh. For anyh ∈ (Z→ R)× N0 we introduce the notations

#h = max (domh)
firsth = hmin(domh) = h0

lasth = hmax(domh) = h#h

∀j ∈ N0 (keepevenh)2·j = h2·j

∀j ∈ N0 (keepevenh)2·j+1 = 0
∀j ∈ N0 (keepoddh)2·j = 0
∀j ∈ N0 (keepoddh)2·j+1 = h2·j+1 .

On down-sampling the domain shrinks accordingly.

#(h � 2) =
⌊

#h
2

⌋
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The functionroots computes the multiset of roots of a polynomial. That is with
∏

as convolutional product
it holds

h = lasth ·
∏

α∈rootsh

(−α, 1) .

We continue with an observation about the structure ofT g: Reordering of the columns ofT g reveals
the similarity to a SYLVESTER matrix.

3.1.6 Definition (SYLVESTER matrix). Given the polynomialsg andh from (Z→ R)×N0 with n = #g
andm = #h. Now the SYLVESTER matrixSg,h fromR{0,...,n+m−1}×({0}×{0,...,m−1}∪{1}×{0,...,n−1}) is
defined by

(Sg,h)j,(0,k) = gj−k

(Sg,h)j,(1,k) = hj−k [Str98, Definition 15.10].

Considering the polynomials as columns we could also write informally

Sg,h =
(
g g → 1 . . . g → (m− 1) h h→ 1 . . . h→ (n− 1)

)
.

For instance for#g = 4 and#h = 3 the SYLVESTER matrix is

Sg,h =



g0 0 0 h0 0 0 0
g1 g0 0 h1 h0 0 0
g2 g1 g0 h2 h1 h0 0
g3 g2 g1 h3 h2 h1 h0

g4 g3 g2 0 h3 h2 h1

0 g4 g3 0 0 h3 h2

0 0 g4 0 0 0 h3


.

This matrix was introduced to describe the BEZOUT equation as simultaneous linear equations. For
polynomialsg, h, x, y with #x = #h− 1 and#y = #g − 1 it holds for the concatenation ofx andy

Sg,h ·

(
x
y

)
= g ∗ x+ h ∗ y .

This means for giveng, h andpwe can determinex andy with g∗x+h∗y = p by solving the simultaneous

linear equationsSg,h ·

(
x
y

)
= p. (With the size ofSg,h as defined above#p is limited to#g + #h− 1.)

We know that the BEZOUT equation can be solved if and only ifgcd (g, h) dividesp. The question whether
g andh have a non-trivial common divisor can be answered with the SYLVESTER matrix, too. Without
constraints the equationg ∗ x+ h ∗ y = 0 is e.g. fulfilled byx = h, y = −g. But if we restrict the degrees
of x andy by #x < deg h and#y < deg g theng andh must have a common divisor in order to allow

non-trivial solutions. Non-trivial solutions of the homogenous equationSg,h ·

(
x
y

)
= 0 are possible if and

only if Sg,h is singular, or equivalentlydetSg,h = 0. This determinant got the name resultant.

3.1.7 Definition (Resultant). Given the polynomialsg andh theresultantis defined as

res (g, h) = detSg,h

[Str98, Definition 15.12].

The resultant can be used to eliminate variables in a multivariate polynomial equation system. Letg(y)
andh(y) be univariate polynomials parametrised by a tupley of some variables. So,g andh actually are
multivariate. If we want to findx andy such that bothE

(
g(y)

)
(x) = 0 andE

(
h(y)

)
(x) = 0, then this
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is only possible ifg(y) andh(y) share some roots. This is equivalent to the conditionres (g(y), h(y)) = 0.
If (y, x) 7→ E

(
g(y)

)
(x) and (y, x) 7→ E

(
h(y)

)
(x) are multivariate polynomial functions theny 7→

res (g(y), h(y)) is also a multivariate polynomial function with one variable less. If more polynomial
equations are available then this method can be used to successively eliminate variables.

We do not need this application but we want to use other properties of the resultant to show our factor
theorem.

3.1.8 Lemma (Properties of the resultant).
Claim.

res (g, h) = 0⇔ g andh have a non-trivial common divisor (3.1.1)

res (g, h) = (−1)#g·#h · res (h, g) (3.1.2)

res (g−, h) = res (h−, g) (3.1.3)

#g = 0⇒ res (g, h) = (first g)#h (3.1.4)

#g = #h+ #s⇒ res (g, h) = res (g + s ∗ h, h) (3.1.5)

res (g, (0, h0, h1, . . . , hn)) = first g · res (g, (h0, h1, . . . , hn)) (3.1.6)

res (g, (h0, h1, . . . , hn, 0)) = last g · res (g, (h0, h1, . . . , hn)) (3.1.7)

∀A ∈ R2×2 ∧#g = #h ∧

(
x
y

)
= A ·

(
g
h

)
⇒

res (x, y) = (detA)#g · res (g, h) (3.1.8)

res (keepeven g, keepodd g) = first g · last g · res (g � 2, g ← 1 � 2)2 (3.1.9)

res(g, g−) = (−2)#g · first g · last g · res(g � 2, g ← 1 � 2)2 (3.1.10)

last g 6= 0 ∧ lasth 6= 0⇒ res (g, h) = lasth#g · last g#h ·
∏

α∈roots g

∏
β∈rootsh

(β − α) (3.1.11)

res (g ∗ h, p) = res (g, p) · res (h, p) (3.1.12)

detT g = (−1)
j

#g+1
4

k
· first g · last g · res (g � 2, g ← 1 � 2)

(3.1.13)

Proof.
• (3.1.1) was already shown above.
• (3.1.2) is because of swapping columns in a matrix changes the sign of the determinant.
• (3.1.3) results from (3.1.2) and the fact that changing the sign of a column or a row changes the sign

of the determinant.
• (3.1.4) describes the determinant of a scaled identity matrix.
• (3.1.5) is a consequence of the fact that adding linear combinations of some columns to a different

column does not change the determinant.
• (3.1.6) can be verified by expanding the determinant with respect to the first row.
• (3.1.7) can be verified by expanding the determinant with respect to the last row.
• (3.1.8) is due to multiple application of the linear transformation to all pairs of corresponding

columns and the determinant product theorem.
• (3.1.9) describes the effect of reordering rows and columns in the SYLVESTER matrix.

• (3.1.10) is a result from (3.1.8) and (3.1.9) because

(
g
g−

)
=

(
1 1
1 −1

)
·

(
keepeven g
keepodd g

)
and

det

(
1 1
1 −1

)
= −2.

• (3.1.11) is proven in [Str98, Definition 15.14]. The product is obviously zero if and only ifg and
h share roots. Although it may contain factors which are not in the ring of coefficients ofg andh
the product belongs to this ring. This is because the product is invariant with respect to arbitrary
permutations of the roots. [Str98, Definition 17.2]



3.2. LIFTING SCHEME 65

• (3.1.12) is justified by (3.1.11) and the fact that for all polynomialsg andh the roots ofg ∗ h are
those ofg and ofh: roots (g ∗ h) = roots g ∪ rootsh.

• (3.1.13) follows from expandingdetT g with respect to the first and the last row yielding the factors
first g andlast g, then reordering the columns.

3.1.9 Remark (Fast computation of the resultant).Together, (3.1.4), (3.1.5) and (3.1.7) allow us to use the
EUCLIDean algorithmfor fast computation of the resultant. [Str98, Definition 15.12] Assumed thatg is
the larger polynomial we can cancel some of the coefficients ofg according to (3.1.5). With (3.1.7) we can
reduce the number of coefficientsg. As soon as the shortenedg becomes shorter thanh we exchangeg and
h. The cancellation is repeated until one polynomial reaches degree 0, then we apply (3.1.4) and stop.

With (3.1.13) we can computedetT g efficiently.

Now we have all prerequisites for improving Theorem3.1.3.

3.1.10 Theorem.
Claim.

detT g · detTh · res (g−, h) = detT g∗h

Proof.

res (g ∗ h, (g ∗ h)−) = res (g, (g ∗ h)−) · res (h, (g ∗ h)−)
∣∣ (3.1.12)

= res (g, g−) · res (g, h−) · res (h, g−) · res (h, h−)
∣∣ (3.1.12)

= res (g, g−) · res (h, h−) · res (g, h−)2
∣∣ (3.1.3)

(−2)#(g∗h) · first (g ∗ h) · last (g ∗ h) · res ((g ∗ h) � 2, (g ∗ h)← 1 � 2)2

= (−2)#g · first g · last g · res (g � 2, g ← 1 � 2)2·
(−2)#h · firsth · lasth · res (h � 2, h← 1 � 2)2 · res (g, h−)2

∣∣ (3.1.10)

first (g ∗ h)2 · last (g ∗ h)2 · res ((g ∗ h) � 2, (g ∗ h)← 1 � 2)2

= first g2 · last g2 · res (g � 2, g ← 1 � 2)2·
firsth2 · lasth2 · res (h � 2, h← 1 � 2)2 · res (g, h−)2∣∣first (g ∗ h) · last (g ∗ h) · res ((g ∗ h) � 2, (g ∗ h)← 1 � 2)

∣∣
=
∣∣first g · last g · res (g � 2, g ← 1 � 2)

∣∣ ·∣∣firsth · lasth · res (h � 2, h← 1 � 2) · res (g, h−)
∣∣

detT g∗h = detT g · detTh · res (g−, h)
∣∣ (3.1.13)

3.2 Lifting scheme

In this section we want to derive thelifting scheme[DS98]. The lifting scheme is a parametrisation of
perfect reconstruction filter banks. This means, every filter bank generated by lifting is a perfect recon-
struction filter bank, and in turn every perfect reconstruction filter bank can be represented by lifting. We
need this parametrisation in order to match the shape of a function with a discrete wavelet while asserting
perfect reconstruction.

Lifting is tightly connected to the EUCLIDean algorithm so we will shortly introduce it.
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3.2.1 EUCLIDean algorithm

3.2.1 Definition (Greatest common divisor).Given two elementsh andg of an EUCLIDean ring, the
elementu is called agreatest common divisorif all common common divisors ofh andg divideu.

All greatest common divisors of two elements differ only by a unit factor.
The EUCLIDean algorithmcomputes a greatest common divisoru of two elementsh andg. Addition-

ally it finds elementsx andy that solve the BEZOUT equation

h · y + g · x = u

and it generates a list of computation steps that we will calllifting steps later.

3.2.2 Definition (EUCLIDean algorithm). The two elementsh andg from an EUCLIDean ring are the
inputs. We compute

p0 = h

p1 = g

pj+2 = pj mod pj+1

= pj − pj+1 · sj .

This is repeated untilpn+1 = 0. The result of the algorithm ispn. [Str98, Example 1.26c]

3.2.3 Lemma.
Claim. The resultu of the EUCLIDean algorithm applied tog andh is a greatest common divisor ofg and
h.

Proof. We show the invariant that each pair(pj , pj+1) has the same common divisors as(g, h). This is
shown by induction. The base casep0 = h, p1 = g is trivial. The induction step consists of the observation
that the pair(pj+1, pj+2) has the same common divisors as(pj , pj+1). This is true because every common
divisor of (pj+1, pj+2) is a common divisor of(pj , pj+1) and vice versa. This in turn is provided by the
fact thatpj andpj+2 differ by a multiple ofpj+1, namelypj+2 − pj = pj+1 · sj .

Because we have an EUCLIDean ring, there is a size functionf such that the remainder has always
a size smaller than the divisor. This impliesf(pj+2) < f(pj+1) which let the algorithm terminate with
f(pn+1) = 0, this meanspn+1 = 0. Thus the set of common divisors ofg andh is identical to the set of
common divisors ofpn and0. All ring elements are divisors of0. Consequently the set consists entirely of
divisors ofpn. A divisor of pn which is divided by all divisors ofpn is clearlypn itself, which implies that
pn is the greatest common divisor ofpn andpn+1.

The elementssj can be used to re-assemble the pair(h, g) from scratch.(
pj
pj+1

)
=

(
sj 1
1 0

)
·

(
pj+1

pj+2

)
(
h
g

)
=
n−1∏
j=0

(
sj 1
1 0

)
·

(
u
0

)

This is the idea which underlies the lifting decomposition.

3.2.2 Translation invariant lifting

At the beginning we want to derive a lifting scheme for the translation invariant discrete wavelet transform
as introduced in Section2.2.2. That is we have the primal filtersh andg and search for dual filters̃h andg̃
with

h ∗ h̃+ g ∗ g̃ = δ .
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+ . . . −

∗sn−1 ∗sn−2 ∗sn−3 ∗sn−3 ∗sn−2

+ . . . −

Figure 3.2: A translation invariant wavelet transform implemented according to the lifting

scheme. The matrices of the form

(
sj δ
δ 0

)
would have to be represented by crossings. We

resolve these crossings by swapping the channels after each lifting step.

Sinceδ is a convolutional unit we know thatδ is a greatest common divisor ofh andg and thus every
common divisor ofh andg is a unit.

Because of that we already know that the EUCLIDean algorithm will return a unitu given a perfect
reconstructible filter pair(h, g). We are more interested in the dual filtersh̃ andg̃ and the representation of
the wavelet transform implied by the algorithm. This representation consists entirely of a kind of addition
matrices, which can be considered as convolve-and-accumulate steps.(

h ∗ x
g ∗ x

)
=
n−1∏
j=0

(
sj δ
δ 0

)
~

(
u ∗ x

0

)
yn+1 = 0
yn = u ∗ x
yj = yj+1 ∗ sj + yj+2

h ∗ x = y0

g ∗ x = y1

This representation can be inverted easily step by step.(
u ∗ x

0

)
=

0∏
j=n−1

(
0 δ
δ −sj

)
~

(
h ∗ x
g ∗ x

)
y0 = h ∗ x
y1 = g ∗ x

yj+2 = yj − yj+1 ∗ sj
yn = u ∗ x

We see that the last step (i.e.j = n− 1) can be omitted because it only yieldsyn+1 = 0. This means that
reconstruction filters̃h andg̃ constructed by this method tend to be shorter than the original filtersh andg.

The matrices of the form

(
sj δ
δ 0

)
somehow mean that we swap the channels in each lifting step. We

can avoid these swaps by changing the direction of two subsequent matrices.(
sj δ
δ 0

)
~

(
sj+1 δ
δ 0

)
=

(
sj δ
δ 0

)
~

(
0 δ
δ 0

)
~

(
0 δ
δ 0

)
~

(
sj+1 δ
δ 0

)

=

(
δ sj
0 δ

)
~

(
δ 0

sj+1 δ

)

This modification is also used for our illustrations of the lifting scheme. The analysis and synthesis using
lifting is illustrated in Figure3.2this way.
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Eventually we obtain the dual filters by omitting the application toh andg.

u =
(
0 1

)
·

1∏
j=n−1

(
0 δ
δ −sj

)
~

(
h
g

)
(
h̃ g̃

)
=
(
0 u∗−1

)
~

1∏
j=n−1

(
0 δ
δ −sj

)
An interesting fact is that the reconstruction by the lifting scheme allows more freedom. The analysis

transform consists of a sequence of operations and the synthesis transform consists of the reversed sequence
of inverted operations. The lifting stepyj = yj+2 + yj+1 ∗ sj and its inverseyj+2 = yj − yj+1 ∗ sj can be
generalised toyj = yj+2 + f(yj+1, sj) andyj+2 = yj − f(yj+1, sj) wheref ∈ (Z→ R)2 → (Z→ R).
There are no restrictions onf (only that it is really a function, that is its values depend exclusively on the
arguments). Of course the choice off as well as the computational realization of “+” and “−” have an
influence on numeric stability. A useful application of this observation is to choosef as a convolution with
rounding. This way bit-exact reconstructions are possible with integer arithmetic. [UVWJ+98]

So far we did not explain what themod operation means for our filters, which have both negative and
positive indices. They are not ordinary polynomials but LAURENT polynomials so there is no natural choice
for a division. However if the polynomials are symmetric it is natural to choose symmetric quotients and
remainders. This choice is unique. We are not aware of a reasonable criterion for the general case. [DS98]

3.2.3 Lifting in the presence of down-sampling

The lifting scheme for the critically sampled DWT is rather similar to that for the translation invariant
transform as shown in the previous section. To be historically correct, the lifting scheme for the normal
DWT is the original one. [DS98] But there is a bit more we must pay attention to, thus we consider it now.

Now we do not only have a restriction forh ∗ h̃+ g ∗ g̃ but also the conditionh ∗ h̃− + g ∗ g̃− = 0 (see
Remark2.2.15). We will see that the lifting scheme with down-sampling can be developed nicely if we
decompose the down-sampled parts ofh andg, namelyhe andge instead ofh andg (see Definition2.2.4).

Given a complementary filter pair(h, g) we apply the EUCLIDean algorithm tohe andge. This yields
a sequence of filterssj with

√
2 ·

(
he
ge

)
=
n−1∏
j=0

(
sj δ
δ 0

)
~

(
u
0

)
.

The wavelet transform is completely determined by the poly-phase matrix, thus we extend the columnar
matrices on both sides. On the right side we introduce some still unknown filtersq0 andq1.

√
2 ·

(
he ho
ge go

)
=
n−1∏
j=0

(
sj δ
δ 0

)
~

(
u q0
0 q1

)
Using the determinant product theorem and the definition of filter complementarity (Definition2.2.9) we
compute the determinants of both sides of the equation.

δ = (−1)n · u ∗ q1
q1 = (−1)n · u∗−1

With sn = (−1)n · u ∗ q0 we can almost complete the lifting decomposition.

√
2 ·

(
he ho
ge go

)
=

n∏
j=0

(
sj δ
δ 0

)
~

(
0 (−1)n · u∗−1

u 0

)
If u is not exactlyδ but a scalar multiple1α · δ then we can completely decompose the flipped diagonal

matrix into four final lifting steps.(
0 (−1)n · α
1
α 0

)
=

(
d 1
1 0

)
·

(
c 1
1 0

)
·

(
b 1
1 0

)
·

(
a 1
1 0

)
·

(
0 (−1)n

1 0

)
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� 2 + . . . − ↑ 2

∗sn ∗sn−1 ∗sn−1 ∗sn +

→ 1 � 2 + . . . − ↑ 2 ← 1

Figure 3.3: A subband coder implemented according to the lifting scheme. The crossings in the
flowchart are suppressed as in Figure3.2

According to [DS98] we can choose

a = 1
b = α− 1

c = − 1
α

d = α− α2 .

But there is one degree of freedom which can be used to reduce the magnitude of values in the lifting
filters, reducing the danger of numerical cancellations. In [Thi01, Section 3.2.1, Paragraph “Weighting by
lifting”] a variant is derived where forα ≤ 1 we can choose

a = −
√

(2 + α) · (1− α) · α

b =

√
1− α

(2 + α) · α

c =

√
(2 + α) · (1− α)

α

d = −
√

(1− α) · α
2 + α

.

Forα > 1 we work with 1
α and apply the reverse lifting sequence. These four additional lifting steps can

be appended to the lifting sequences with

sn+1 = (d) sn+2 = (c) sn+3 = (b) sn+4 = (a)

leading to a total number ofn+ 5 lifting steps.

Summarised the transformation using lifting consists of the following steps.

1. Split the inputx into the even indexed partx � 2 and the odd indexed part(x→ 1) � 2. This alone
can be considered as one level of the discrete wavelet transform with respect to thelazy wavelet(or
better thelazy filter bank). The lazy wavelet basis consists entirely of DIRAC impulses and is not
considered as true wavelet basis, because DIRAC impulses are not functions.

2. After the splitting the lifting steps are applied as in the previous section. We obtain the signal filtered
by bothh andg in the down-sampled forms.

This interpretation of lifting is illustrated in Figure3.3.

3.2.4 Remark.Instead of applying the lifting filters to down-sampled signals you can also up-sample the
lifting filters and apply them to the original input signal. You have to down-sample the two last signals
after this lifting procedure in order to get the low and the high band.
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√
2 ·

(
he ↑ 2 ho ↑ 2
ge ↑ 2 go ↑ 2

)
=
n+4∏
j=0

(
sj ↑ 2 δ
δ 0

)
~

(
0 (−1)n · δ
δ 0

)
√

2 ·

(
h ∗ x
g ∗ x

)
=
√

2 ·

(
he ↑ 2 ho ↑ 2
ge ↑ 2 go ↑ 2

)
~

(
δ

δ → 1

)
∗ x

=
n+4∏
j=0

(
sj ↑ 2 δ
δ 0

)
~

(
0 (−1)n · δ
δ 0

)
~

(
x

x→ 1

)

=
n+4∏
j=0

(
sj ↑ 2 δ
δ 0

)
~

(
x→ 1

(−1)n · x

)
This allows to write the lifting composition as

yn+1 = (−1)n · x
yn = x→ 1
yj = yj+1 ∗ sj ↑ 2 + yj+2√

2 · h ∗ x = y0√
2 · g ∗ x = y1 .

3.2.5 Remark.It is also possible to apply the EUCLIDean algorithm to the filtershe andho, instead ofhe
andge. Then you get the lifting decomposition in the order from lazy wavelet to the wanted wavelet. This
implies that most of the information necessary for lifting is already contained in the low-pass filter.

3.2.6 Remark.Lifting allows conversion between any two complementary filter banks. The easiest way to
achieve this is to decompose both filter banks down to the lazy filter bank. Then one of the decomposition
step lists is appended in reversed order and with altered signs to the other list.

A more direct way even allows to convert between two non-complementary filter banks. But the
premise is that their polyphase matrices have the same determinant which must be different from zero.
If we have two polyphase matricesP0 andP1 and we search lifting filterssj with

P0 =
n−1∏
j=0

(
sj δ
δ 0

)
~ P1

then we can computeP0 ~ P1
−1 e.g. with CRAMER’s rule because the determinants can be divided. Con-

sequently the convolutional determinant ofP0 ~ P1
−1 is δ. Therefore the lifting decomposition can be

successfully applied to this matrix quotient. We obtain the lifting filters as solution of

P0 ~ P1
−1 =

n−1∏
j=0

(
sj δ
δ 0

)
.

Let us summarise some features of the lifting scheme:
• Lifting always allows for perfect reconstruction. Conversely, every perfect reconstruction filter bank

can be represented by lifting. That is lifting is a parametrisation of perfect reconstruction filter banks.
• It is enough to have an invertible addition in order to assert perfect reconstruction down to the bit

representation even for numerical instable filter banks.
• We have more freedom for the design of lifting steps. Certain non-linearities are possible while

retaining perfect reconstructability.
• It speeds up computation by a factor of at least 2. This factor can only be achieved because lifting

excludes filter banks that do not allow perfect reconstruction.
• It can be performed in-place. That is the signal can be transformed without requiring additional

memory for temporary results. (Strictly spoken: Only constant amount of additional memory is
needed).

The perfect reconstruction property is essential for our matching problem.
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3.2.4 Lifting decomposition of CDF wavelets

In the previous sections we have shown using the EUCLIDean algorithm that every perfect reconstruction
filter bank can be decomposed into lifting steps. It is an interesting question whether we are able to find
explicit lifting decompositions for a whole class of (well-known) filter banks. There is already a table of
lifting decompositions of some CDF filter banks [URB97]. Fortunately there is even a general formula for
the lifting decomposition of the CDF wavelets.

The family ofCDF wavelets (COHEN-DAUBECHIES-FEAUVEAU) was developed in order to get a filter
bank where the synthesis low-pass is a pure power of1

2 ·(1, 1) and the analysis low-pass contains a specific
power of 1

2 · (1, 1) as convolutional factor [Dau92, Section 8.3.4]. Letn be the exponent of12 · (1, 1) in
the low-pass filterh andñ be the exponent of12 · (1, 1) in the low-pass filter̃h (which is also the exponent
of 1

2 · (1,−1) in g). We will translateh in order to simplify subsequent calculations. Especially we want
to renounce symmetry in order to have a simple power with no case distinctions for translations and the
translation ofh shall be independent of̃n. For the CDF filter bankn+ ñ must be even. (In general this is
not necessary, as the perfect reconstruction filter bank consisting of1

2 · (1, 1) and(0, 1) shows.) ThusN
defined byN = n+en

2 is an integer. We want to abbreviate1
2 ·(1, 1) with pwhich implies1

2 ·(1,−1) = p−.

h = p∗n

g = p∗en
− ∗ q ← N

The problem is to determineq. We use the substitutionw = 1
4 · (1,2, 1) (w = p∗2 ← 1) and start our

derivation with the condition for perfect reconstruction (Corollary2.2.14).

h ∗ g− − h− ∗ g = δ → 1
h ∗ g− = (−1)N · p∗n+en ∗ q− ← N

= (−w)∗N ∗ q−
h− ∗ g =

(
h ∗ g−

)
−

= (−w−)∗N ∗ q
∣∣ w− = δ − w

= (w − δ)∗N ∗ q
(−w)∗N ∗ q− − (w − δ)∗N ∗ q = δ → 1

(w − δ)∗N ∗ q = −δ → 1 + (−w)∗N ∗ q−
(δ − w)∗N ∗ q = (−1)N+1 · δ → 1 + w∗N ∗ q−

The next step is a kind of division by(δ−w)∗N . We know about the series for the power function [KRG95]

(1 + x)α =
∞∑
k=0

(
α

k

)
· xk

(
α

k

)
=

k∏
j=1

α− k + j

j

which becomes the binomial formula for non-negative integralα. Becauseq is the solution of a BE-
ZOUT equation we know thatq must have finite degree. This means that the convolutional division(
(−1)N+1 · δ → 1 + w∗N ∗ q−

)
/∗ (δ − w)∗N is defined. From the BEZOUT equation we know even

more thatq must have a degree smaller thanN . It follows that we can truncate the series after theN -th
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term. The termw∗N ∗ q− must complement the remainder in the division afterN steps. The solution

q = (−1)N+1 ·
N−1∑
k=0

(
−N
k

)
· (−w)∗k → 1

= (−1)N+1 ·
N−1∑
k=0

(
N + k − 1

k

)
· w∗k → 1

g = (−1)N+1 · p∗en
− ∗

N−1∑
k=0

(
−N
k

)
· (−w)∗k ← (N − 1) (3.2.1)

= (−1)N+1 · p∗en
− ∗

N−1∑
k=0

(
N + k − 1

k

)
· w∗k ← (N − 1)

can be verified by insertion into the condition we started on.

Note that there is also a generalisation of CDF wavelets to B-Splines of fractional order. That is the
low-pass is a certain powerp∗α with a fractionalα. If α is not an integer these masks are infinite and
not necessarily everywhere non-negative [UB99, UB00, BU00]. Other contributions on spline wavelets
address orthogonal wavelet bases (BATTLE-LEMARIÉ wavelets) [Bat87, Lem88], semi-orthogonal bases
[CW92, UAE92, UAE93] and shift orthogonal bases [UTA98].

In the next three theorems we want to state the lifting decomposition of wavelets of the CDF family.
From Remark3.2.5we know that we need only one of the filters in order to compute all lifting steps except

the last one. We develop the lifting sequence for the binomial mask
(

1
2 · (1, 1)

)∗n
because of its simple

structure. The lifting composition will produce a high-pass filter which is shorter than the low-pass. But
the BEZOUT equation for determining the shortest counterpart for the low-pass has a unique solution. We
conclude that the lifting sequence will describe just the CDF-n, (n mod 2) filter bank.

In the next two theorems we will present the structure of the intermediate filters of the lifting com-
position. In principle we could determine them by posing a BEZOUT problem on the high-pass, compute
the un-lifted low-pass and iterate that procedure. Unfortunately the trick with the aborted power function
series does no longer work in subsequent steps. So we have to guess the structure and prove it afterwards.

In the structure of the intermediate filters we will recognise how a factor1
4 · (1,2, 1) is latently added

in each lifting step. In the last step all of these binomial factors are revealed. These first
⌈
n
2

⌉
lifting

steps which construct the binomial low-pass filter will generate a high-pass with onlyn mod 2 vanishing
moments. The last step will add the remaining ones.

Note that for the two following theorems we will translate the filters more symmetrical in order to lift
between the lazy wavelet and the CDF wavelet.

3.2.7 Theorem (Lifting decomposition of CDF-n, 0 for evenn).
Prerequisite. Let a be the sequence which is recursively defined by

a0 =
1
n

am =
1

(n− 2 ·m) · (n+ 2 ·m) · am−1

=
1

(n2 − 4 ·m2) · am−1
.
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It can also be written explicitly

a0 =
1
n

a1 =
n

(n− 2) · (n+ 2)

a2 =
(n− 2) · (n+ 2)

(n− 4) · n · (n+ 4)
...

am =
m∏

j=−m
(n+ 2 · j)(−1)m+j+1

.

Claim. With the lifting steps

x−1 = (1,0)
x0 = (1)

xm+1 = xm−1 + am · (2 ·m+ 1,0, 2 ·m+ 1)← (−1)m ∗ xm

xn/2 is essentially a binomial filter, concrete

xn/2 =
(

1
2
,1,

1
2

)∗n/2
←
(
n

2
mod 2

)
.

The filter pair(2−n/2 · xn/2, 2n/2 · xn/2−1) is that of the CDF-n, 0 wavelet.

Proof. The problem becomes simpler if we translate the filters such that they are symmetric with respect
to their origin. This means

ym = xm → (m mod 2)
which fits into a modified lifting scheme

y−1 = (1)
y0 = (1)

ym+1 = ym−1 + am · (2 ·m+ 1,0, 2 ·m+ 1) ∗ ym .

and consequentlyyn/2 =
(

1
2 ,1,

1
2

)∗n/2
. We have simplified expressions but no longer real lifting steps

because a lifting filter must be of the forms ↑ 2.
In the next step we get rid of the fractions by multiplying eachym by its denominator. For negativem

the product must be generalised by suitable divisions.

zm+1 =

 m∏
j=0

(n− 2 ·m+ 4 · j)

 · ym+1 (3.2.2)

Now multiply the lifting step with the product.

z−1 =
1
n
· δ

z0 = δ

zm+1 = (n− 2 ·m) · (n+ 2 ·m) · zm−1 + (2 ·m+ 1) · (1,0, 1) ∗ zm (3.2.3)

By considering the expressions for somezm we derive an assumption about a general formula forzm.
Due to the claim the sequence itemzn/2 must be a power of(1,2, 1). Actually, a structure inzm becomes



74 CHAPTER 3. MATCHING WAVELETS

visible only if it is expanded with respect to powers of(1,2, 1). Our new claim is

w = (1,2, 1)
z0 = δ

z1 = (n− 2) · δ + w

z2 = (n− 2) · (n− 4) · δ + 3 · (n− 4) · w + 3 · w∗2

z3 = (n− 2) · (n− 4) · (n− 6) · δ + 6 · (n− 4) · (n− 6) · w + 15 · (n− 6) · w∗2 + 15 · w∗3
...

zm =
m∑
j=0

bm,j · w∗j ·
m∏

k=j+1

(n− 2 · k) . (3.2.4)

It occursb the family of BESSELpolynomials (A1498 in [Slo03]), which is defined by

∀j ≥ 0 bm,j =
1

j! · 2j
·

j∏
k=1−j

(m+ k)

∀j < 0 bm,j = 0 .

For j > m it is bm,j = 0 because the product contains a zero factor. For integralm andj ∈ {0, . . . ,m} it
holds

bm,j =
(m+ j)!

(m− j)! · j! · 2j

and with the relationb−m,j = bm−1,j we can convert between negative and positivem.
The linear factors with respect ton cause thatzm is a convolutional multiple of the powerw∗µ with

µ =

n
2 : n2 ≤ m
0 : else

. In particularzn/2 = bn/2,n/2 · w∗n/2.

zn/2 = bn/2,n/2 · w∗n/2

=
n!

(n/2)! · 2n/2
· w∗n/2

=

n/2−1∏
j=0

(1 + 2 · j)

 · w∗n/2
=

n/2−1∏
j=0

(2 + 4 · j)

 · (1
2
,1,

1
2

)∗n/2
The last equation is conform to (3.2.2). Thus if the explicit formula forzm is confirmed then the theorem
is proven.

In order to simplify writing we call the coefficients of the powers ofw in (3.2.4) cm,j and rewrite the
recursion (3.2.3) using these numbers.

pm,j =
m∏

k=j+1

(n− 2 · k)

cm,j = bm,j · pm,j

zm =
m∑
j=0

cm,j · w∗j =
∑
j∈Z

cm,j · w∗j

zm+1 = (n− 2 ·m) · (n+ 2 ·m) · zm−1 + (2 ·m+ 1) · (w − (2)) ∗ zm
cm+1,j = (n− 2 ·m) · (n+ 2 ·m) · cm−1,j + (2 ·m+ 1) · (cm,j−1 − 2 · cm,j)
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We are now going to check whether the explicit representation of the intermediate steps fits into the
recursion formula.

The base case consists ofz0 andz1.

y0 = (1)
y1 = y−1 + a0 · (1,0, 1) ∗ y0

=
(

1
n
,1,

1
n

)
z0 = (1)
z1 = n2 · z−1 + (1,0, 1) ∗ z0

= (1,n, 1)
= (n − 2) + (1,2, 1)

Form ≥ 2 we check whether the recursion forzm holds. Forj ≤ 0 andj > m the coefficientscm,j
are zero which allowed us to expresszm by the sum over all indicesj. The recursion properties onbm,j
are true for all integralj as well. So we do not need to distinguish between the regular case andj ≤ 0 and
j > m.

(m+ 1) · (m+ j) · bm,j−1 = m · (m− j + 1) · bm,j−1 + j · (2 ·m+ 1) · bm,j−1

becausebm,j − bm−1,j = (m− j + 1) · bm,j−1 = (m+ j − 1) · bm−1,j−1

(m+ 1) · (bm+1,j − bm,j) = m · (bm,j − bm−1,j) + j · (2 ·m+ 1) · bm,j−1

−2 · (m+ 1) · bm+1,j = 2 ·m · bm−1,j − 2 · (2 ·m+ 1) · (bm,j + j · bm,j−1)
becausebm+1,j = bm−1,j + (2 ·m+ 1) · bm,j−1

bm+1,j · (n− 2 · (m+ 1)) = (n+ 2 ·m) · bm−1,j + (2 ·m+ 1) · (bm,j−1 · (n− 2 · j)− 2 · bm,j)
multiply with pm,j , i.e.

∏m
k=j+1(n− 2 · k)

bm+1,j · pm+1,j = (n− 2 ·m) · (n+ 2 ·m) · bm−1,j · pm−1,j

+(2 ·m+ 1) ·
(
bm,j−1 · pm,j−1 − 2 · bm,j · pm,j

)

3.2.8 Theorem (Lifting decomposition of CDF-n, 1 for odd n).
Prerequisite. Let a be the sequence which is recursively defined by

a0 =
1
n

am =
1

(n− 2 ·m+ 1) · (n+ 2 ·m− 1) · am−1

=
1(

n2 − (2 ·m− 1)2
)
· am−1

.

It can also be written explicitly

a0 =
1
n

a1 =
n

(n− 1) · (n+ 1)

a2 =
(n− 1) · (n+ 1)

(n− 3) · n · (n+ 3)
...

am = n−(−1)m ·
m∏
j=0

(
n2 − (2 · j + 1)2

)(−1)m+j

.
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Claim. With the lifting steps

x−1 = (1,0)
x0 = (1)
x1 = x−1 + x0 ∗ a0 · (1)

xm+1 = xm−1 + xm ∗ am · (2 ·m− 1,0, 2 ·m+ 1)← (−1)m

1. For n+1
2 even, letm = n+1

2 andk = 0.
2. For n+1

2 odd, letm = n−1
2 andk = 1.

x(n+1)/2 = 2k ·
(
2·m
m

)(
m
m/2

) · (1
4
· (1,2, 1)

)∗(n−1)/2

∗ 1
2
· (1, 1)← k

Proof. As in the case of even order CDF wavelets we want to translate the filters in order to make them
somehow symmetric. More precisely

ym = xm → (m mod 2)
which leads to the modified lifting scheme

y−1 = (1)
y0 = (1)
y1 = y−1 + y0 ∗ a0 · (0, 1)

ym+1 = ym−1 + ym ∗ am · (2 ·m− 1,0, 2 ·m+ 1) .

Our new claim is that
• for n+1

2 even withm = n+1
2 andk = 0, and

• for n+1
2 odd withm = n−1

2 andk = 1
we obtain

y(n+1)/2 = 2k ·
(
2·m
m

)(
m
m/2

) · (1
4
· (1,2, 1)

)∗(n−1)/2

∗ 1
2
· (1, 1) .

Multiplying ym with the denominator leads to

z2·m = y2·m · 2 ·
m∏
j=1

(
n2 − (4 · j − 3)2

)
z2·m+1 = y2·m+1 · 2 · n ·

m∏
j=1

(
n2 − (4 · j − 1)2

)
(3.2.5)

and the recursion relation

z−1 =
2 · n
n2 − 1

· (1)

z0 = (2)

z1 = z−1 ·
(
n2 − 1

)
+ z0 ∗ (0, 1)

zm+1 = zm−1 ·
(
n2 − (2 ·m− 1)2

)
+ zm · (2 ·m− 1,0, 2 ·m+ 1) .

With

w = (1,2, 1)
v = (−1,0, 1)
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our new claim is

z0 = 2 · δ
z1 = 2 · (n− 1) · δ + (w + v)
z2 = 2 · (n− 1) · (n− 3) · δ + 2 · (n− 3) · (2 · w + v) + 3 · (w + v) ∗ w
z3 = 2 · (n− 1) · (n− 3) · (n− 5) · δ + 3 · (n− 3) · (n− 5) · (3 · w + v)

+6 · (n− 5) · (3 · w + 2 · v) ∗ w + 15 · (w + v) ∗ w∗2
...

∀m > 0 zm =
m∑
j=0

(m+ j − 1)!
(m− 1)! · 2j−1

·

((
m

j

)
· w∗j +

(
m− 1
j − 1

)
· v ∗ w∗j−1

)
·

m∏
k=j+1

(n− 2 · k + 1)

=
m∑
j=0

2 · bm,j
m+ j

·
(
m · w∗j + j · v ∗ w∗j−1

)
·

m∏
k=j+1

(n− 2 · k + 1) .

If we can prove this we are done since

z(n+1)/2 =
2 · b(n+1)/2,(n+1)/2

n+ 1
·
(
n+ 1

2
· w∗(n+1)/2 +

n+ 1
2
· v ∗ w∗(n−1)/2

)
=

(n+ 1)!
n+1

2 ! · 2(n+1)/2
· (w + v) ∗ w∗(n−1)/2

1. for n+1
2 even letm = n+1

2 , rewrite the coefficient of(w + v) ∗ w∗m−1

(2 ·m)!
m! · 2m

=

(
2·m
m

)(
m
m/2

)
· 2m

· m!2

(m/2)!2

=

(
2·m
m

)(
m
m/2

) · 21−m ·

m/2−1∏
j=0

(2 · (1 + 2 · j) · (m/2 + 1 + j))


=

(
2·m
m

)(
m
m/2

) · 21−2·m ·

m/2−1∏
j=0

(2 · (m− 1− 2 · j))

 ·
m/2−1∏

j=0

(2 · (m+ 2 + 2 · j))


=

(
2·m
m

)(
m
m/2

) · 21−2·m ·

m/2−1∏
j=0

((n− 1− 4 · j) · (n+ 1 + 4 · j))



2. for n+1
2 odd letm = n−1

2 , rewrite the coefficient of(w + v) ∗ w∗m
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(2 · (m+ 1))!
(m+ 1)! · 2m+1

=

(
2·m
m

)
· (2 ·m+ 1)(

m
m/2

)
· 2m+1

· m!2

(m/2)!2

=

(
2·m
m

)(
m
m/2

) · 2−m · n ·
m/2−1∏

j=0

(2 · (1 + 2 · j) · (m/2 + 1 + j))


=

(
2·m
m

)(
m
m/2

) · 2−2·m · n ·

m/2−1∏
j=0

(2 · (m− 1− 2 · j))

 ·
m/2−1∏

j=0

(2 · (m+ 2 + 2 · j))


=

(
2·m
m

)(
m
m/2

) · 2−2·m · n ·

m/2−1∏
j=0

((n− 3− 4 · j) · (n+ 3 + 4 · j))

 .

In both cases we end up with (3.2.5).
What remains to show is the correctness of the explicit formula forzm. As in the case of even ordern

we will express the proof in terms of the coefficientscm,j of w∗m and of the coefficientsdm,j of v∗w∗m−1

in zm. The recursions oncm,j anddm,j are mutually depending.

zm =
(
cm,0

)
+

m∑
j=1

(
cm,j · w∗j + dm,j · v ∗ w∗j−1

)
We introduce an abbreviation for the product.

pm,j =
m∏

k=j+1

(n− 2 · k + 1)

c′m,j =

 21−j

j! ·
∏j−1
k=0(m

2 − k2) : j ≥ 0
0 : j < 0

d′m,j =

 21−j

(j−1)! ·m ·
∏j−1
k=1(m

2 − k2) : j > 0

0 : j ≤ 0

Form+ j 6= 0 this is equivalent to

c′m,j =
2 · bm,j ·m
m+ j

d′m,j =
2 · bm,j · j
m+ j

.

cm,j = c′m,j · pm,j
dm,j = d′m,j · pm,j

v∗2 = w ∗ (w − (4))

zm ∗ w =
m∑
j=0

(
cm,j · w∗j+1 + dm,j · v ∗ w∗j

)
zm ∗ v =

m∑
j=0

(
cm,j · v ∗ w∗j + dm,j · (w − (4)) ∗ w∗j

)
zm+1 = zm−1 ·

(
n2 − (2 ·m− 1)2

)
+ zm · (2 ·m · (w − (2)) + v)

cm+1,j = cm−1,j ·
(
n2 − (2 ·m− 1)2

)
+ (2 ·m · (cm,j−1 − 2 · cm,j) + dm,j−1 − 4 · dm,j)

dm+1,j = dm−1,j ·
(
n2 − (2 ·m− 1)2

)
+ (2 ·m · (dm,j−1 − 2 · dm,j) + cm,j−1)
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We start the proof of correctness of the explicit representation ofzm with base casesz0 andz1.

y0 = (1)
y1 = y−1 + a0 · (0, 1) ∗ y0

=
(
1,

1
n

)
z0 = (2)
z1 = (n2 − 1) · z−1 + (0, 1) ∗ z0

= 2 · (n, 1)
= 2 · (n − 1) + (1,2, 1) + (−1,0, 1)

Form > 1 we will track down the recursion onc andd simultaneously. The steps can be read in the
order given here but the proof direction is reversed. This means that divisions are actually multiplications
which is important in cases where a division by zero might occur.

Divide the recursion bypm,j , i.e.
∏m
k=j+1(n− 2 · k + 1).

c′m+1,j · (n− 2 ·m− 1) =

c′m−1,j · (n+ 2 ·m− 1) + (2 ·m · c′m,j−1 + d′m,j−1) · (n− 2 · j + 1)− 4 · (m · c′m,j + d′m,j)

d′m+1,j · (n− 2 ·m− 1) =

d′m−1,j · (n+ 2 ·m− 1) + (2 ·m · d′m,j−1 + c′m,j−1) · (n− 2 · j + 1)− 4 ·m · d′m,j

Becausec′m+1,j − c′m−1,j = 2 ·m · c′m,j−1 + d′m,j−1 andd′m+1,j − d′m−1,j = 2 ·m · d′m,j−1 + c′m,j−1 we
can eliminate the coefficients ofn− 1.

−c′m+1,j · 2 ·m = c′m−1,j · 2 ·m+ (2 ·m · c′m,j−1 + d′m,j−1) · 2 · (1− j)− 4 · (m · c′m,j + d′m,j)
−d′m+1,j · 2 ·m = d′m−1,j · 2 ·m+ (2 ·m · d′m,j−1 + c′m,j−1) · 2 · (1− j)− 4 ·m · d′m,j

0 = (c′m+1,j + c′m−1,j) ·m+ (2 ·m · c′m,j−1 + d′m,j−1) · (1− j)− 2 · (m · c′m,j + d′m,j)
0 = (d′m+1,j + d′m−1,j) ·m+ (2 ·m · d′m,j−1 + c′m,j−1) · (1− j)− 2 ·m · d′m,j

Divide by

 1
j!·2j−1 ·

∏j−2
k=2−j(m+ k) : j ≥ 0

0 : j < 0

and

 1
(j−1)!·2j−1 ·

∏j−2
k=2−j(m+ k) : j > 0

0 : j ≤ 0
, respectively.

0 = (m+ 1) ·m · (m+ j − 1) · (m+ j) + (m− 1) ·m · (m− j + 1) · (m− j)
+(2 ·m2 + j − 1) · (1− j) · 2 · j − 2 · (m2 + j) · (m+ j − 1) · (m− j + 1)

= (m2 + (j + 1) ·m+ j) ·m · (m+ j − 1) + (m2 − (j + 1) ·m+ j) ·m · (m− j + 1)
+(2 ·m2 + j − 1) · (1− j) · 2 · j − 2 · (m2 + j) · (m+ j − 1) · (m− j + 1)

= (2 · j ·m+ j) ·m · (m+ j − 1) + (−2 · j ·m+ j) ·m · (m− j + 1)
+(2 ·m2 + j − 1) · (1− j) · 2 · j − 2 · j · (m+ j − 1) · (m− j + 1)

= (2 ·m+ 1) ·m · (m+ j − 1) + (−2 ·m+ 1) ·m · (m− j + 1)
+2 · (2 ·m2 + j − 1) · (1− j)− 2 · (m+ j − 1) · (m− j + 1)

= (2 ·m2 + j − 1) · (m+ j − 1)− (2 ·m2 + j − 1) · (m− j + 1) + 2 · (2 ·m2 + j − 1) · (1− j)
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0 = (m+ j − 1) · (m+ j) ·m+ (m− j + 1) · (m− j) ·m
−2 ·m · (2 · j − 1) · (j − 1)− 2 ·m · (m+ j − 1) · (m− j + 1)

= (m+ j − 1) · (m+ j) + (m− j + 1) · (m− j)
−2 · (2 · j − 1) · (j − 1)− 2 · (m+ j − 1) · (m− j + 1)

= (m+ j − 1) · (2 · j − 1) + (m− j + 1) · (1− 2 · j)− 2 · (2 · j − 1) · (j − 1)

3.2.9 Remark.Because of

lim
m→∞

(
2·(m+1)
m+1

)(
2·m
m

) = lim
m→∞

(2 ·m+ 2) · (2 ·m+ 1)
(m+ 1)2

= 4

the value of
(
2·m
m

)
grows asymptotically like4m. More precisely according to [Mol98] it holds

4m√
4 ·m+ 1

≤
(

2 ·m
m

)
≤ 4m√

2 ·m+ 1
.

Thus
(2·m
m )

( m
m/2)

is approximately2m−1/2.

The previous theorems showed what steps are necessary to lift from a lazy filter bank to the one of the
CDF-n, (n mod 2) wavelet. How to get from there to CDF-n, ñ?

We only need one lifting step and we can calculate it immediately by resolving the equation for the last
lifting step to the lifting filter. Let(h, g′) be the filter pair of CDF-n, (n mod 2), andg be the high-pass of
CDF-n, ñ there must be a filters with

g = g′ + h ∗ (s ↑ 2)
s = ((g − g′) /∗ h) � 2 .

We need a polynomial division but in Theorem3.3.1we will see thath is a divisor ofg − g′ and that the
result is a filter with zeros at odd indices. We prefer the notationg /∗h to g ∗h∗−1 because the division ofg
by h is unique if there is no remainder, whereasg ∗ h∗−1 suggests that there is a unique inverse ofh which
is in general not true.

From (3.2.1) we know bothg andg′ explicitly. Let N = n+en
2 , M = n+en mod 2

2 , w = 1
4 · (1,2, 1)

(w = p∗2 ← 1).

g − g′

= (−1)N+1 · p∗en
− ∗

N−1∑
j=0

(
−N
j

)
· (−w)∗j ← (N − 1)

−(−1)M+1 · p∗en mod 2
− ∗

M−1∑
j=0

(
−M
j

)
· (−w)∗j ← (M − 1)

= (−1)M+1 · p∗en mod 2
− ← (M − 1)

∗

(−1)N−M · p∗N−M− ← (N −M) ∗
N−1∑
j=0

(
−N
j

)
· (−w)∗j −

M−1∑
j=0

(
−M
j

)
· (−w)∗j


= (−1)M+1 · p∗en mod 2

− ← (M − 1) ∗

w∗N−M− ∗
N−1∑
j=0

(
−N
j

)
· (−w)∗j −

M−1∑
j=0

(
−M
j

)
· (−w)∗j
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(−1)M+1 · (g − g′) /∗ p∗en mod 2
− → (M − 1)

= (δ − w)∗N−M ∗
N−1∑
j=0

(
−N
j

)
· (−w)∗j −

M−1∑
j=0

(
−M
j

)
· (−w)∗j

= (δ − w)∗N−M ∗

 ∞∑
j=0

(
−N
j

)
· (−w)∗j −

∞∑
j=N

(
−N
j

)
· (−w)∗j


−

 ∞∑
j=0

(
−M
j

)
· (−w)∗j −

∞∑
j=M

(
−M
j

)
· (−w)∗j


= (δ − w)∗N−M ∗

(δ − w)∗−N −
∞∑
j=N

(
−N
j

)
· (−w)∗j


−(δ − w)∗−M +

∞∑
j=M

(
−M
j

)
· (−w)∗j

=
∞∑
j=M

(
−M
j

)
· (−w)∗j − (δ − w)∗N−M ∗

∞∑
j=N

(
−N
j

)
· (−w)∗j

The last expression does not seem to be much simpler than the first one. But now we can convince ourselves
thatw∗M is a factor ofg − g′ and we can remove it.

(g − g′) /∗ w∗M = −p∗en mod 2
− ∗ ∞∑

j=M

(
−M
j

)
· (−w)∗(j−M) − (δ − w)∗N−M ∗

∞∑
j=N

(
−N
j

)
· (−w)∗(j−M)

← (M − 1)

Because ofh = p∗n or equivalentlyw∗M = h ∗ p∗en mod 2 ←M it holds

(g − g′) /∗ h = −
(

1
4
· (1, 0,−1)

)∗en mod 2

← (n+ ñ mod 2− 1)

∗

 ∞∑
j=M

(
−M
j

)
· (−w)∗(j−M) − (δ − w)∗N−M ∗

∞∑
j=N

(
−N
j

)
· (−w)∗(j−M)


= −

(
1
4
· (1,0,−1)

)∗en mod 2

← (n− 1)

∗

 ∞∑
j=M

(
−M
j

)
· (−w)∗(j−M) − (δ − w)∗N−M ∗

∞∑
j=N

(
−N
j

)
· (−w)∗(j−M)

 .

Unfortunately even the last expression is not suitable for checking if the described filter is up-sampled (i.e.
has the forms ↑ 2). However this form is probably the most appropriate for computation. First compute
the series with respect tow. Keep only the first2 · (N −M) terms (or̃n− ñ mod 2) because the remaining
ones vanish. Then evaluate the truncated series with respect to the signal representation1

4 · (1,2, 1) of w.

3.3 Optimal matches

3.3.1 State of the Art

The idea of creating wavelets matched to a pattern is not new. The topic is sporadically explored for at least
ten years now, but there was no breakthrough for the application of wavelets for pattern detection so far.
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Since a discrete wavelet function is composed byψ = 2 · (g ∗ ϕ) � 2 (Definition 2.2.26) some authors
argue that the shape of the waveletψ is dominated by the shape of the high-pass filterg while the low-
pass filterh must preserve a smooth shape ofϕ. With this simplification GREINER [Gre96] constructs
wavelets for classifications of textures. As matching criteria he employs the EUCLIDean norm of the
difference between the high-pass filter and a sampled pattern and alternatively some criterion derived from
a principal component analysis. These criteria together with the requirement of filter bank orthogonality
yield a quadratic minimisation problem with non-linear constraints, which he solves with the NEWTON

methodapplied to the LAGRANGE multiplier formulation. Additionally he shows that when dropping
the orthogonality constraint one can design a filter bank with more than two channels which allows the
separation of multiple textures in one transform.

ZHANG, DAVIDSON and WONG [ZDW04] consider the projection of a patternf into a wavelet sub-
space of low resolution. They design an orthogonal wavelet transform by optimising the filters in the sense
that the pattern can be represented essentially by large scale wavelets. Ideally if a match with respect
to a scale is perfect and the pattern is wavelet transformed with the matched filter bank then the wavelet
coefficients of the finer scales are zero. The authors of that article estimate the error made by substituting
ϕ by h and formulate the optimisation criterion in terms ofh ∗ h∗ andQf ∗ Qf∗. They end up with a
semi-definite programming problem which can be solved with interior point methods.

Also CHAPA and RAGHUVEER consider orthogonal wavelet bases [RC00]. Their approach can be
interpreted as a generalisation of the frequency domain construction of MEYER wavelets. They separate
the matching procedure into matching the absolute FOURIER spectra and matching the phase spectra of
pattern and wavelet. The wavelet is band-limited. This ensures that the wavelet transform of the pattern
with respect to the matched wavelet has significant coefficients in one scale only, independent from the

translation of the input data. The band-limit constraint turns out to be rather restrictive such that
∣∣∣ψ̂∣∣∣ is 1

in the interval[π + α, 2 · (π − α)] and 0 in the interval[0, π − α] and above2 · (π + α) for someα from
[0, π3 ]. Because of symmetry this is also true for the respective negative intervals. Forα = 0 one obtains
SHANNON’s wavelet and forα = π

3 one has the maximum flexibility. The match of the pattern to the
absolute wavelet spectrum turns into a linear least squares problem with linear constraints. The phase is
found via matching the group delay. This turns into a linear least squares problem, too.

In [GJP02] GUPTA, JOSHI, and PRASAD use a filterh as low-pass andh∗− → 1 as highpass, just like
in the orthogonal case (see Remark2.2.17). The optimisation target is the energy of the difference between
the lowest scale signalx0 ∗ ϕ and the first band signal(y1 ∗ ψ) ↑ 2, which is equal to(x1 ∗ ϕ) ↑ 2.
The optimisation criterion is to find the filterh for a given patternx0 which minimises the energy of
(x1 ∗ ϕ) ↑ 2. This means that the pattern can be represented mostly by the wavelet coefficients at the first
level and the scaling coefficients are of minor significance. The optimisation is considerably simplified
to a linear equation system by neglecting orthogonality and smoothness constraints. The disadvantage is
clearly that the method yields in general no perfect reconstruction filter banks.

An algebraical approach is introduced by DE V ILLIERS, M ICCHELLI, and SAUER [DVMS00]. They
construct refinable functions which match a pattern exactly at integral positions. Ifx is a sampled pattern,
then they ask for a maskh such that for the corresponding generatorQϕ = x holds. Due to Lemma2.2.31
it holds

Qϕ = 2 · (h ∗Qϕ) � 2
= 2 · (h � 2 ∗ (Qϕ) � 2 + (h← 1) � 2 ∗ (Qϕ→ 1) � 2) .

This is a BEZOUT equation which can be solved with the EUCLIDean algorithm (Section3.2.1) if and only
if the greatest common divisor of(Qϕ) � 2 and(Qϕ→ 1) � 2 dividesQϕ. The refinable function can also
be reconstructed if not the values at integral arguments are given but the integrals over integer intervals, i.e.
xi =

∫
(i,i+1)

ϕ. It seems to be an open question how to modify a pattern minimally such that it matches
the values of a refinable function at integral arguments.

3.3.2 Deriving a least squares problem

We will follow our approach of a matching algorithm based on lifting. It will roughly work this way:
First we choose a generator and then we ask for a complementary wavelet which matches a pattern. The
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constructed wavelet bases are in general not orthogonal. In Chapter4 we will refine this method for
preserving smoothness of the primal functions.

We start with the observation, that for a specific filterh there is only a restricted choice of complemen-
tary filtersg. More precisely, the lifting steps as in Remark3.2.4are the only possibility to convert between
filter banks which have one filter in common.

3.3.1 Theorem.
Prerequisite. The filtersh andg are complementary as well ash andg′.
Claim. The filterg′ can be derived fromg by adding a multiple ofh, where the factor polynomial contains
only even powers.

∃s g′ − g = h ∗ (s ↑ 2)

Proof. First we will show thath dividesg′ − g.
From Corollary2.2.14it can be concluded that

h ∗ g− − h− ∗ g = δ → 1
h ∗ g ′− − h− ∗ g ′ = δ → 1

and thus both differences are equal

h ∗ g ′− − h− ∗ g ′ = h ∗ g− − h− ∗ g

h ∗
(
g ′− − g−

)
= h− ∗

(
g ′ − g

)
. (3.3.1)

Becauseh divides the right hand side, it must divide left hand side, too. According to Corollary2.2.8, h
andh− must be relatively prime and thush must divideg′ − g.

Now we will verify that the quotients′ of (g′ − g) /∗ h has only even-indexed coefficients. We re-write
(3.3.1) usings′:

h ∗ h− ∗ s ′− = h− ∗ h ∗ s ′

s ′− = s ′

This means thats′ has only even indexed coefficients, and thus we obtains = s′ � 2.

Our goal is to construct wavelet functions that are close to a given target functionf from R → R.
The first approach will be to fix the scaling functionϕ and to find a complementary wavelet functionψ
as approximation forf . To this end we translate the above theorem to real functions. It means that all
possible wavelet functionsψ′ complementary toϕ and only these are linear combinations ofψ and integral
translations ofϕ.

3.3.2 Theorem.
Prerequisite. The functionϕ is refinable with respect toh, ψ andψ′ are wavelet functions with respect to
g andg′, respectively. The filter pair(h, g) is complementary.
Claim. ψ′ is complementary toϕ if and only ifψ′ is a linear combination ofψ and translates ofϕ, i.e.

ψ′ = ψ + s ∗ ϕ .

Proof. The functionsψ andψ′ are defined by (2.2.10)

ψ = 2 · (g ∗ ϕ) ↓ 2
ψ′ = 2 · (g′ ∗ ϕ) ↓ 2

and thus

ψ′ − ψ = 2 · ((g′ − g) ∗ ϕ) ↓ 2
due to Theorem3.3.1there is a filters which satisfies
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ψ′ − ψ = 2 · ((s ↑ 2) ∗ h ∗ ϕ) ↓ 2
= s ∗ 2 · (h ∗ ϕ) ↓ 2
= s ∗ ϕ .

The converse follows from Remark3.2.4.

Given a target functionf we want to find ans such that the shape ofψ + s ∗ ϕ is similar to that off .
That is we want to solve the linear least squares problem:

argmin
s
‖ψ + s ∗ ϕ− f‖2 .

Since we have a linear problem the solution does not depend on the choice ofψ out of the affine space of
functions complementary toϕ.

But we do not know whether the amplitude off is chosen properly. Thus we also allow a weighting of
ψ, that is

argmin
c,s

‖c · ψ + s ∗ ϕ− f‖2

or more verbose

argmin
c,s

∥∥∥∥∥∥c · ψ +
∑
k∈Z

sk · (ϕ→ k)− f

∥∥∥∥∥∥
2

.

The solution is interpreted as: Using the lifting filtersc we obtainψ + s
c ∗ ϕ which is close tofc . The

solution of the least squares problem is the projection of the patternf into the vector space spanned byψ
andϕ → k. Examples for such basis are plotted in Figure3.4. The matching process is demonstrated in
Figure3.5.

In a multi-resolution analysis the amplitude of the wavelet functionψ depends on the functionϕ. If the
coefficientc becomes very small compared to the coefficients ofs by the optimisation then the result has
to be considered as bad approximation.

3.3.3 Solving the least squares problem

Now we want to dig into the details of the solution of the least squares problem. We want to discuss two
essential approaches.

Standard linear least squares solvers

An easy way to solve the least squares problem is to fully discretise it and let it solve by some general least
squares solver likeLAPACK’s GELSroutine.

This preserves a good numerical behaviour but it is quite inefficient. Letf be the discretised pattern,n
the refinement level, letH andG be the refined filter masks (Definition2.2.1) ands the lifting filter

H = Rn−1
h h = h ∗ h ↑ 2 ∗ · · · ∗ h ↑ 2n−2 ∗ h ↑ 2n−1

G = Rn−1
h g = h ∗ h ↑ 2 ∗ · · · ∗ h ↑ 2n−2 ∗ g ↑ 2n−1

denote their boundary indices with

k0 = min {i : Hi 6= 0} k1 = max {i : Hi 6= 0}
l0 = min {i : Gi 6= 0} l1 = max {i : Gi 6= 0}
j0 = min {i : si 6= 0} j1 = max {i : si 6= 0}



3.3. OPTIMAL MATCHES 85

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3  4  5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -3 -2 -1  0  1  2  3  4  5  6

Figure 3.4: A basis for matching patterns: Matching with a wavelet via lifting means projection
into a sub-space. Bases are shown for matching when the generator is a B-spline of second order
(hat function) or of fourth order (cubic spline). Each basis consists of one generator (solid) line
and several wavelets build from the CDF-2,0 and CDF-4,0 filter banks.

and declare the matrixA with

A =



Hk0 0
... 0 0 0

Hk0+1 0
... 0 0 0

Hk0+2 0
... 0 0 0

...
...

...
...

...

Hk0+2n Hk0

... 0 0 0

Hk0+2n+1 Hk0+1
... 0 0 Gl0

Hk0+2n+2 Hk0+2
... 0 0 Gl0+1

...
...

...
...

...
... H2n−1−1 H−2n−1−1

... G−1

... H2n−1 H−2n−1
... G0

... H2n−1+1 H−2n−1+1

... G1

...
...

...
...

...

0 0
... Hk1−2 Hk1−2n−2 Gl1−1

0 0
... Hk1−1 Hk1−2n−1 Gl1

0 0
... Hk1 Hk1−2n 0

...
...

...
...

...

0 0
... 0 Hk1−2 0

0 0
... 0 Hk1−1 0

0 0
... 0 Hk1 0



.
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Figure 3.5: Match of wavelets with patterns: A clipped ramp function is matched with a wavelet
associated with the hat generator (CDF-2) and an appropriately translated and dilatedsinc func-

tion (sincx =

1 : x = 0
sin x
x : else

) is matched with a wavelet complementary to the CDF-4 gener-

ator. The lifting filters is restricted to 12 coefficients thus the basis for the linear least squares
problem (both figures in the vertical centre) contains 12 copies of the generator. The ramp is
also an unlucky example where the coefficientc of ψ becomes zero thus perfect reconstruction
is not possible. The reason is that the wavelet of the CDF-2,0 filter bank is an even function and
the pattern is an odd function, and both are symmetric with respect to the same centre.
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Then we solve the least squares problemargminx ‖A · x− f‖2 and obtains andc in terms of a vector of
the following form 

sj0
sj0+1

...
sj1−1

sj1
c


.

If f is not completely sampled equidistantly but some values are missing then we can simply remove
the corresponding rows fromA and solve the remaining equation system.

For an irregularly sampled pattern we need to approximate the generator and the wavelet function at
the same nodes like the pattern. To this end we can use the refinement method described in Section3.1.2.

Custom solution with normal equations

Let f be a discrete or continuous pattern, that is for some index setI it is f ∈ I → R, x ∈ `0 (Z)
andA be a linear operator from̀0 (Z) → (I → R). The vectorx minimizes‖Ax− f‖2, if and only if
A∗(Ax) = A∗f . [Sto99, Section 4.8.1]

∀y ‖Ay − f‖2 ≥ ‖Ax− f‖2 ⇔ A∗(Ax) = A∗f

This optimization problem isconvexand thus there is always a minimizing vectorx. If A∗ ◦A is invertible,
then the solution is unique and it holds

argmin
x
‖Ax− f‖2 =

(
A∗ ◦A

)−1 (A∗f) .

The vectorx is discrete, independently ofI. ConsequentlyA∗ ◦A can be represented by a matrix. Thus
we can reduce the optimisation problem to the solution of a system of linear equations, called thenormal
equations. It allows for several optimisations but the condition ofA∗ ◦ A may be large, which means that
the solution of the equations system raises numerical problems. A rule of thumb is: The larger the size of
the filterh, the more the translates ofh overlap, the worse is the condition number with respect to inversion.

Efficient solution of the normal equations

Let A be the linear operator from the previous section. The matrix representation ofA∗ ◦ A has a block
structure. It can be represented by

A∗ ◦A ∼

(
H K
K∗ (G)

)
with

H ∈ R{j0,...,j1}×{j0,...,j1}

K ∈ R{j0,...,j1}×1

G ∈ R .

According to [HJ85] the inverse is also of block form, more precisely(
H K
K∗ (G)

)−1

=
1
q
·

(
q · H−1 + J · J ∗ −J

−J ∗ (1)

)
J = H−1 · K
q = G − 〈K,J 〉 .

Because of the symmetric TOEPLITZ structure ofH, every matrix multiplication involvingH−1 can be
computed efficiently [Amm96].
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3.3.4 Efficient computation of normal equations

Continuous pattern

If the patternf is given as continuous function and the scalar products〈ϕ→ k, f〉 and 〈ψ, f〉 can be
computed, thenf can be matched immediately withϕ andψ.

We have

A(s, c) = s ∗ ϕ+ c · ψ
and consequently

A∗f = (Q(f ∗ ϕ∗), 〈f, ψ〉)
A∗(A(s, c)) =

(
Q((s ∗ ϕ+ c · ψ) ∗ ϕ∗), 〈s ∗ ϕ+ c · ψ,ψ〉

)
=
(
s ∗Q(ϕ ∗ ϕ∗) + c ·Q(ψ ∗ ϕ∗),

〈
s,Q(ϕ∗ ∗ ψ)

〉
+ c · ‖ψ‖22

)
.

The matrix forA∗ ◦ A consists merely of discretised convolutions ofϕ andψ with ϕ∗ andψ∗. They can
be computed efficiently by the algorithm in Section3.1.2.

Discretised pattern

If the pattern is given in discretised formf ∈ `0 (Z) we should match it with the refined filters since they
are implicitly applied by the wavelet transform. This means we do not interpret the pattern as a linear
combinationf ∗ ϕ of small generators, but we interpret it just as the plain sequencef .

We obtain

A(s, c) = s ↑ 2n ∗H + c ·G
and with Lemma1.2.13

A∗f = ((f ∗H∗) � 2n, 〈f,G〉)
A∗(A(s, c)) =

(
((s ↑ 2n ∗H + c ·G) ∗H∗) � 2n, 〈s ↑ 2n ∗H + c ·G,G〉

)
=
(
s ∗ (H ∗H∗) � 2n + c · (G ∗H∗) � 2n,

〈
s, (H∗ ∗G) � 2n

〉
+ c · ‖G‖22

)
.

It holds‖G‖22 = (G ∗G∗)0 and of course‖G‖22 =
(
(G ∗G∗) � 2n

)
0
. Analogously it holds〈f,G〉 =(

(f ∗G∗) � 2n
)
0
. Further we can compute(H ∗ H∗) � 2n, (G ∗ H∗) � 2n, and(G ∗ G∗) � 2n rather

efficiently by a repeated convolution with immediate down-sampling.
One thing we need is the connection

Rnhx ∗ Rng y = Rnh∗g(x ∗ y) .

It remains to find an efficient computation which benefits from the down-sampling. The following lemma
is essentially the consideration for the cascade algorithm in Section3.1.1ported to discrete signals.

3.3.3 Lemma.
Claim.

T nhx =
(
h ↑ 2n−1 ∗ . . . ∗ h ↑ 2 ∗ h ∗ x

)
� 2n

Proof. The claim is equivalent to

T nhx =
(
Rnhδ ∗ x

)
� 2n .

We use induction overn. First we verify that

T 0
hx = x = R0

hδ ∗ x
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For the induction step we need (1.2.2) of Lemma1.2.2:

T nhx =
(
Rnhδ ∗ x

)
� 2n

T n+1
h x = T nh (T hx)

=
(
Rnhδ ∗ T hx

)
� 2n

=
(
Rnhδ ∗ (h ∗ x) � 2

)
� 2n

(1.2.2)
=

(
Rnhδ ↑ 2 ∗ h ∗ x

)
� 2n+1

(2.2.4)
=

(
Rh
(
Rnhδ

)
∗ x
)

� 2n+1

=
(
Rn+1
h δ ∗ x

)
� 2n+1 .

The iterated application ofT h is more efficient than computingRnhδ, because the first one has shorter
filters as intermediate results. The computations are summarised

(f ∗H∗) � 2n = T nh∗f
(f ∗G∗) � 2n = T ng∗f

(H ∗H∗) � 2n = T nh∗h∗δ
(G ∗H∗) � 2n = T g∗h∗

(
T n−1
h∗h∗δ

)
(G ∗G∗) � 2n = T g∗g∗

(
T n−1
h∗h∗δ

)
.

3.3.5 Conclusion

Now we want to summarise the advantages and disadvantages of the presented method.
Advantages

• The smoothness of the matched wavelet can be chosen arbitrarily.
• The found filter pairs are automatically complementary. If this is not necessary there are certainly

much simpler methods which perform fast pattern detection.
• The resulting least squares problem is easy to understand. The user can intuitively decide which

kinds of patterns can be matched well and which cannot. He can intuitively decide at which scale
the pattern should be matched and how long the filters should be.

• The optimisation is fast.

Disadvantages

• The found filter pair is not orthogonal i.e. analysis and synthesis wavelet differ.
• Smoothness of the dual basis functions is hard to achieve. Figure3.6 shows that for our previous

examples. Refer to Section4.3for strategies to fix this problem.
• Patterns in the signal can only be retrieved if they are at the scales and positions of the dyadic grid.

The last point can be weakened in the following way: Several wavelets can be matched to shifted and
rescaled variants of the pattern. Then one wavelet transform per pattern variant can be applied. The result
is redundant, of course. It can also be unsatisfying since the matching quality will not be homogeneous
over all shifts and scales of the pattern.
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Figure 3.6: Primal and dual generators and wavelets for matched wavelets: We show primal
and dual functions of the match examples from Figure3.5. We match the ramp with respect to
CDF-3,1 (that is the matched wavelet is forced to have one vanishing moment, see Section4.3.2
for details) because the match with CDF-2,0 does not allow for perfect reconstruction. Thesinc
function is matched to CDF-4,0. The fractal shape of the dual functions implies bad numerical
properties of the wavelet transform with respect to these wavelets.



Chapter 4

Smoothness of matched wavelets

The approximation of a given functionf by a discrete wavelet functionψ is one part of our matching
problem. The second part is that the wavelet transformation with respect to the filter masksh andg and its
inverse transformation should have good numerical properties. An important criterion for a numerical sta-
ble wavelet transformation is the smoothness of the dual functionsψ̃ andϕ̃. The wavelet transform consists
of correlating the dual functions̃ψ, ϕ̃ and their dilates and translates with the signalx, that is〈ϕ̃→ k, x〉

and

〈(
ψ̃ → k

)
↓ 2j , x

〉
. You can imagine that correlating a signal with non-smooth functions causes

strong dependencies from the shift of the signalx. Using smooth dual functions reduces the sensitivity
against shift of the signal, but due to the recursive structure ofϕ̃ creating smooth dual generator functions
is more difficult as one may think at first.

4.1 How to measure smoothness

Smoothness of functions is usually described by function spaces. This section gives a short introduction
to function spaces as far as necessary for our consideration of discrete wavelets. For a more detailed
introduction refer to e.g. [Tri92].

4.1.1 Smoothness and differentiability

What is the mathematical meaning of the smoothness of a function? We have the notion ofcontinuitywhich
means, intuitively spoken, that a function has no bumps. But it may have sharp bends. A continuously
differentiable function cannot have sudden bends thus “smooth” is often used as synonym forcontinuously
differentiable. We can state that differentiating makes a function less smooth and that a function which is
differentiable of high order is quite smooth.

However it must be noted that this kind of smoothness includes arbitrary sharp bends or even almost
bumps. The problem is certainly that our intuition of smoothness depends on the scale. Something that
is smooth on a small scale may no longer be considered smooth at a large scale. Because differentiability
does not depend on scales it cannot fully reflect an intuitive notion of smoothness.

4.1.1 Definition (Spaces of differentiable functions).For k ∈ N0 the space denoted byCk (R) is the
space ofk times continuously differentiable bounded functions. That isC0 (R) contains all bounded and
uniformly continuous functions and iff ′ is bounded andf ′ ∈ Ck (R) thenf ∈ Ck+1 (R).

TheCk (R) spaces are related to the supremum norm, they contain only bounded functions. Given
a functionf from Ck (R) you can measure the weight and the roughness of the function by a term like

‖f‖∞ +
∥∥f ′∥∥∞ + · · ·+

∥∥∥f (k)
∥∥∥
∞

.

An alternative space of functions of increasing smoothness is the SOBOLEV space where theLp (R)
norm is used for measurement of the weight and the roughness of a function, like in‖f‖p +

∥∥f ′∥∥
p
+ · · ·+

91
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∥∥∥
p
.

4.1.2 Definition (SOBOLEV spaces).Fork ∈ N0 the SOBOLEV spacedenoted byW k
p (R) is the space of

functionsf for which each of the firstk weak derivatives is inLp (R). This is equivalent to the criterion

whether‖f‖p +
∥∥f ′∥∥

p
+ · · ·+

∥∥∥f (k)
∥∥∥
p

exists.

4.1.2 Smoothness and the frequency domain

Our considerations of smoothness shall lead to an algorithm which makes a wavelet smoother which re-
sults from the pattern match algorithm. Using the differentiation order as measure of smoothness would
lead to a discrete optimisation problem. This seems to be more complicated than generalising the smooth-
ness measurement to finer (i.e. fractional) grades of smoothness. We just need a definition of fractional
derivatives.

Here the frequency spectrum (that is the FOURIER transform) of a function comes to our help. If
we have decomposed a function into complex exponential functions the differentiation is easy since the
derivative ofx 7→ ei·ξ·x is x 7→ i · ξ · ei·ξ·x. That is the differentiation only changes the weighting of the
function. This leads to the statement

f̂ ′(ξ) = i · ξ · f̂(ξ)

f̂ (k)(ξ) = (i · ξ)k · f̂(ξ)
which can be easily generalised to any reals

f̂s(ξ) = ei·s·π/2 · ξs · f̂(ξ) .

We see that differentiation amplifies high frequencies, thus differentiation is a high-pass filter. If a norm of
a FOURIER transformed function remains finite after some fractional differentiation this indicates a smooth
function. If the FOURIER transform of a function decays fast enough for high frequencies it fulfils this
condition.

We are now going to define generalisations of the spaces of differentiable functions and the SOBOLEV

spaces to fractional differentiations. They are also more general in the sense that they do not only contain
functions but also distributions, namely objects like the DIRAC impulse. For this purpose we need the
SCHWARZ spaceS (R) consisting of fast decaying arbitrarily often differentiable functions and its dual
spaceS′ (R) which is the set of all complex-valued tempered distributions onR.

HOELDER continuity

The HOELDER-ZYGMUND function spaceCs (R) with s ∈ R ands ≥ 0 contains all functions that are up
to dse times differentiable and some more functions. It is a generalisation of the spaces of differentiable
functions. A characterisation can be given using a smooth dyadic resolution of the unity of the FOURIER

domain and according band pass filtering [Tri92, pages 14-17].

4.1.3 Definition (Dyadic resolution of the unity). The sequenceψ of functions fromN0 → R → R is
calleddyadic resolution of the unityif

suppψ0 ⊆ [−2, 2]

∀j ∈ N suppψj ⊆
{
ξ : |ξ| ∈ [2j−1, 2j+1]

}
∃C > 0 ∀j ∈ N0

∥∥ψj∥∥∞ < C

∀ξ ∈ R
∞∑
j=0

ψj(ξ) = 1 .

A dyadic resolutionψ is called smooth if the functions of the sequenceψ are arbitrarily often differen-
tiable.
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4.1.4 Definition (HOELDER-ZYGMUND space). For a smooth dyadic resolution of the unityψ the
HOELDER-ZYGMUND function spaceCs (R) is defined as

Cs (R) =
{
f : f ∈ S′ (R) ∧ ∃C ∀j ∈ N0 2j·s ·

∥∥∥ψ̂j ∗ f∥∥∥
∞
< C

}
.

The so defined space is equal for all smooth dyadic resolutions of the unity.

SOBOLEV smoothness

The fractional SOBOLEV spaceHs
p (R) is the generalisation of the SOBOLEV spaceW s

p (R). We restrict
ourselves toHs

2 (R) which allows for a characterisation that was used by VILLEMOES to explore the
smoothness of refinable functions.

4.1.5 Definition. The SOBOLEV function spaceHs
2 (R) is defined as

Hs
2 (R) =

{
f : f ∈ S′ (R) ∧

(
ξ 7→

(
1 + |ξ|2

)s
· f̂(ξ)2

)
∈ L1 (R)

}
.

4.2 Computing the smoothness of refinable functions

4.2.1 Convolutional decomposition

From the differentiation property of the FOURIER transform we can conclude that a function is smooth if
its FOURIER transform decays fast. However it should be noted that this is not necessary. A function with
a FOURIER transform consisting of peaks that become narrow fast enough at high frequencies, can also be
smooth.

If we have two functionsf andg whose FOURIER transforms are majorised byξ 7→ |ξ|s andξ 7→ |ξ|t,
respectively, then the FOURIER transform of their convolution̂f ∗ g is bounded byξ 7→

√
2 · π · |ξ|s+t.

This means iff̂ really decays (s < 0) thenf ∗ g will be smoother thang by the decay (this means: the
smoothness order) off .

Theorem2.2.30allows us to consider a refinable function as convolution of other refinable functions.
If we factorise a refinement mask then we obtain associated refinable functions which are convolutional
factors of the original refinable function. There are factors that are of a special interest because they help
smoothing a refinable function.

TheBox-Spline(alsoB-Spline) of jth degreeBj is a function which consists piecewise of polynomial
functions of degreej. It is a convolutional power of the characteristic functionχ[0,1), the function which
is one at the interval[0, 1) and zero elsewhere.

Bj = χ
∗(j+1)
[0,1)

Further on the characteristic functionχ[0,1) is refinable with respect to the mask1
2 · (1, 1). Theorem2.2.30

implies thatBj is refinable with respect to
(

1
2 · (1, 1)

)∗(j+1)

.

Every real polynomial can be decomposed into polynomials of degree 2. [Str95, Theorem 25.21,
Lemma 25.24] Among the possible linear factors (polynomials of degree 1) the factors related to B-Splines
( 1
2 · (1, 1)) are exceptionally smooth. The functionχ[0,1) which is associated with the mask12 · (1, 1)

belongs to allHs
2 (R) for s < 1

2 . Whereas a refinable function of a mask
(

1
2

+ ε, 1
2 − ε

)
with ε 6= 0 does

belong at most toHs
2 (R) with s < 0.

The next two theorems quantify the smoothness advance that is achieved by convolving with the char-
acteristic function.

4.2.1 Theorem.
Prerequisite. Letϕ ∈ Cα (R).
Claim. Thenϕ ∗ χ[0,1) ∈ Cα+1 (R).
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Proof. We will show thatϕ ∗ χ[0,1) is as smooth as the integral ofϕ.
The following identity holds:

(ϕ ∗ χ[0,1))(x) =
∫

R

(
t 7→ ϕ(t) · χ[0,1)(x− t)

)
=
∫

R

(
t 7→ ϕ(t) · χ(−1,0](t− x)

)
=
∫

R

(
t 7→ ϕ(t) · χ(x−1,x](t)

)
=
∫

(x−1,x)

ϕ

=
∫

(0,x)

ϕ−
∫

(0,x−1)

ϕ

given that the integral
∫
(0,x)

ϕ exists.

Sinceϕ ∈ Cα (R) it is
(
x 7→

∫
(0,x)

ϕ
)
∈ Cα+1 (R) and thus the difference of such functions is in

Cα+1 (R), too.

Also for the fractional SOBOLEV smoothness we obtain one degree of smoothness more for every
convolution withχ[0,1).

4.2.2 Theorem.
Prerequisite. ϕ ∈ Hs

2 (R)
Claim. ϕ ∗ χ[0,1) ∈ Hs+1

2 (R)

Proof.

χ̂[−1,1)(ξ) =
2√
2 · π

· sin ξ
ξ

χ[0,1) = (χ[−1,1) → 1) ↓ 2

χ̂[0,1)(ξ) =
2√
2 · π

·
sin ξ

2

ξ
· e−i·ξ/2

∀ |ξ| ≤ π

2
1 + |ξ|2 ≤ 1 +

π2

4
∧

∣∣∣∣∣ sin ξ
2

ξ/2

∣∣∣∣∣
2

≤ 1

∀ |ξ| > π

2
1 + |ξ|2

|ξ|2
≤ 4
π2

+ 1 ∧
∣∣∣∣2 · sin ξ2

∣∣∣∣2 ≤ 4

∀ξ
(
1 + |ξ|2

)
·

∣∣∣∣∣2 · sin ξ
2

ξ

∣∣∣∣∣
2

≤ 6∥∥∥∥ξ 7→ (
1 + |ξ|2

)s+1

· ̂ϕ ∗ χ[0,1)(ξ)2
∥∥∥∥

1

=
∥∥∥∥ξ 7→ (

1 + |ξ|2
)s+1

· 2 · π · ϕ̂(ξ)2 · χ̂[0,1)(ξ)2
∥∥∥∥

1

≤ 6 ·
∥∥∥∥ξ 7→ (

1 + |ξ|2
)s
· ϕ̂(ξ)2

∥∥∥∥
1

and consequently ifϕ ∈ Hs
2 (R) thenϕ ∗ χ[0,1) ∈ Hs+1

2 (R).

What we got is that ifh is a mask for a refinable function thenh ∗ 1
2 · (1, 1) is the mask for a smoother

function with usually similar shape. We will thus call1
2 · (1, 1) thesmoothness factor.

Thus it is worth separating B-spline factors from a refinable function before considering its smoothness.
In this sense each refinable function can be considered as a convolution of a B-spline and a very fractal
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Figure 4.1: The generator of the orthogonal DAUBECHIES-2 wavelet basis decomposed into
a B-spline and a fractal part. The convolution of both functions in each row results in the
DAUBECHIES-2 generator. The function graphs are generated with the cascade algorithm (Sec-
tion 3.1.1) over 6 levels of refinement. There is certainly no function which is refinable with
respect to the DAUBECHIES-2 generator mask without any B-Spline factor, as well as there is
no function (but the DIRAC impulse distribution) which is refinable with respect toδ. Thus their
function graphs (especially the heights) are arbitrary.
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object, that is a non-regular distribution (Figure4.1). Roughly spoken the B-spline is responsible for the
smoothness and the fractal portion defines the shape.

The factor 1
2 · (1, 1) in a mask can also be characterised by a zero of the FOURIER symbol. Since

w = 1
2 · (1, 1) is associated witĥw(ξ) = 1

2 ·
(
1 + ei·ξ

)
it is ŵ(π) = 0, thus a maskh contains the factorw

exactlyn times if and only if̂h has an times zero atπ.
The consideration of smoothness of refinable functions leads us to the eigenvalue spectrum of the re-

finement operator. There is a tight connection between the smoothness factors and some special eigenvalues
of the refinement operator. [Str96]

4.2.3 Theorem.
Prerequisite. Let h ∈ `0 (Z) with

∑
h = 1 andϕ be refinable with respect to12 · (1, 1) ∗ h. The operator

T h is a convolution with subsequent down-sampling (T hx = (h ∗ x) � 2) as in Definition2.2.32.
Claim.

• 2 · T 1
2 ·(1,1)∗h

has all eigenvalues of2 · T h multiplied with 1
2 (that is the eigenvalues ofT h) and

additionally the eigenvalue1.
• If x is a right eigenvector of2 ·T h then(1,−1)∗x is a right eigenvector of2 ·T 1

2 ·(1,1)∗h
. That is the

neighbouring elements ofx are subtracted. The extra eigenvalue of2 · T 1
2 ·(1,1)∗h

has the discretised
refinable functionQϕ as right eigenvector.

• If y is a left eigenvector of2 · T h then y /∗ (−1,1) is a left eigenvector of2 · T 1
2 ·(1,1)∗h

. The
eigenvectory will almost always have infinite support thus there is no satisfying notion of divisibility.
The division is not unique. One example is the discrete integration (cumulative sum) of the sequence
y. The extra eigenvalue of2 · T 1

2 ·(1,1)∗h
has the left eigenvector(. . . , 1,1, 1, . . . ).

Proof. First we consider how eigenvalues and eigenvectors evolve fromT h to T 1
2 ·(1,1)∗h

. For the right
eigenvectors we find

λ · x = T hx
= (h ∗ x) � 2

λ · (1,−1) ∗ x = (1,−1) ∗ (h ∗ x) � 2
= (h ∗ (1, 0,−1) ∗ x) � 2

λ

2
· (1,−1) ∗ x =

(
1
2
· (1, 1) ∗ h ∗ (1,−1) ∗ x

)
� 2

= T 1
2 ·(1,1)∗h

((1,−1) ∗ x) .

Left eigenvectors ofT h are right eigenvectors ofT h∗.

T h = (� 2) ◦ (h∗)
T h∗ = (h∗)∗ ◦ (� 2)∗ | Lemma1.2.13

= (h∗∗) ◦ (↑ 2)

T h∗y = h∗ ∗ (y ↑ 2)
λ · y = h∗ ∗ (y ↑ 2)

λ · y /∗ (−1,1) = h∗ ∗ (y ↑ 2) /∗ (−1,1)
= (1,1) ∗ h∗ ∗ (y ↑ 2) /∗ (−1, 0,1)
= (1,1) ∗ h∗ ∗ ((y /∗ (−1,1)) ↑ 2)

λ

2
· y /∗ (−1,1) =

(
1
2
· (1, 1) ∗ h

)∗
∗ ((y /∗ (−1,1)) ↑ 2)

= T 1
2 ·(1,1)∗h

∗((y /∗ (−1,1)) ↑ 2)
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What about the eigenvectors of the new eigenvalue1? The statement for the right eigenvector was
already confirmed in Section3.1.2. For the left eigenvector we obtain

2 · T 1
2 ·(1,1)∗h

∗ (. . . , 1,1, 1, . . . ) = (1,1) ∗ h∗ ∗ (. . . , 1,1, 1, . . . ) ↑ 2

= h∗ ∗ (. . . , 1,1, 1, . . . )

=
∑

h · (. . . , 1,1, 1, . . . )
= (. . . , 1,1, 1, . . . ) .

4.2.4 Remark.In Remark2.2.34it was shown that the sets of finitely supported right eigenvectors ofTh
and ofT h are equal. In contrast to that for each finite left eigenvectorx we derive

deg x = deg(h∗ ∗ (x ↑ 2))
deg x = deg h+ 2 · deg x

0 = deg h+ deg x .

This can be fulfilled only for zero degreeh andx. This implies that fordeg h > 0 the left eigenvectors of
T h have infinite support.

The above theorem shows that a power
(

1
2 · (1, 1)

)∗K
of smoothness factors in a maskh corresponds

to the eigenvalues12 ,
1
4 ,

1
8 , . . . , 2

−K of Th. The converse is not true: The mask
(

1
2 ,0,

1
2

)
induces the

eigenvalues12 ,
1
2 , 0 but contains no smoothness factor. Every convolution with a smoothness factor halves

all eigenvalues. The absolute value of the largest eigenvalue which is not associated to smoothness factors
determines the smoothness of the refinable function. The smaller this eigenvalue the smoother the function.
For some smoothness measurements we will have to considerTh∗h∗ instead ofTh.

4.2.2 V ILLEMOES machine

In Section4.1.2 we got to know how smoothness of functions can be expressed by their memberships
in spaces of functions of certain degrees of smoothness. The family of SOBOLEV spaces and the family
of HOELDER spaces are certainly the most popular ones. In the previous section we have seen how the
factor 1

2 · (1, 1) in a refinement mask contributes to the smoothness of the refinable function. We will now
complement that with smoothness estimates of the remaining mask.

The key component of all smoothness measures for refinable functions is the following operation de-
fined for a maskm:

1. Extract the convolutional factor14 · (1,2, 1) as often as possible fromm. That is chooseK such that

m =
(

1
4
· (1,2, 1)

)∗K
∗ h

whereh contains no further smoothness factor1
4 · (1,2, 1). (Equivalent:ĥ has no double zero at

π, i.e. ĥ(π) 6= 0 or ĥ′(π) 6= 0, or alternatively:Eh has no double zero at−1). Note that the mask
1
4 · (1,2, 1) corresponds to the symbolξ 7→

(
cos ξ2

)2

.

2. Set up the matrixTh and compute the absolute value of its largest eigenvalue. This is denoted by
thespectral radius% (Th).

3. The result of the operation is

Mm = 2 ·K − log2 % (2 · Th)
= 2 ·K − 1− log2 % (Th) .
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HOELDER continuity

The definition Definition4.1.4of HOELDER-ZYGMUND spaces is not suitable for application on refinable
functions. We use the following embedding instead.

4.2.5 Lemma. {
f : f ∈ S′ (R) ∧

(
ξ 7→

(
1 + |ξ|

)s · f̂(ξ)
)
∈ L1 (R)

}
⊂ Cs (R)

Proof. Consider a more special resolution of the unity whereψ0 has values between0 and1 everywhere
and which is1 in the interval[−1, 1]. All other functions are defined byψj = ψ0 ↑ 2j − ψ0 ↑ 2j−1 (see
[Tri92], page 15).

For all j ∈ N0 it holds that

2j·s ·
∥∥∥ψ̂j ∗ f∥∥∥

∞
≤ 2j·s ·

∥∥∥ψj · f̂∥∥∥
1

≤
∞∑
k=0

2k·s ·
∥∥∥ψk · f̂∥∥∥

1

≤ 2s ·
∫

R

(
ξ 7→ (1 + |ξ|)s ·

∣∣∣f̂(ξ)
∣∣∣) .

An estimate of the HOELDER continuity for refinable functions in terms of their refinement mask was
derived from this embedding by CONZE and RAUGI [CR90, Con90]. For a summary see [Dau92]. The
price to be paid for using an embedding is that we cannot find the maximums (“the true smoothness”) for
which the considered refinable function is inCs (R).

The estimate can be made more simple in the case thatm̂ is a positive function, that is∀ξ ∈ R m̂(ξ) ≥
0.

4.2.6 Theorem (HOELDER continuity of a refinable function). Given the maskm decide:

1. If m̂ is positive, sets0 = Mm.
2. If m̂ is not positive, sets0 = 1

2 · (Mm∗m∗ − 1).

Letϕ be the refinable function associated with the maskm. Then it holds

∀s ∈ R s < s0 ⇒ ϕ ∈ Cs (R) .

SOBOLEV smoothness

The SOBOLEV smoothness of a refinable function can be characterised similarly to Theorem4.2.6[Vil93,
Theorem 2.3].

4.2.7 Theorem (SOBOLEV smoothness of a refinable function).
Prerequisite. Given the maskm let s0 = 1

2 ·Mm∗m∗ . We need the conditionB (ϕ) from Definition2.2.21
saying that the integral translates ofϕ form a RIESZ basis.
Claim.

1. ∀s ∈ R s < s0 ⇒ ϕ ∈ Hs
2 (R)

2. ∀s ∈ R B (ϕ) ∧ ϕ ∈ Hs
2 (R)⇒ s < s0

That meanss0 can be regarded as an accurate measurement of the smoothness ofϕ.

This smoothness measurement method can be generalised to non-separable multi-dimensional
wavelets. [RS96, DGM99]
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4.2.3 Simple estimates

The estimates given in this section are already presented in [Thi04], but especially the last and most precise
estimation could be simplified a lot by the notion of the circular convolution. The computation of this
estimate can be accelerated with the discrete FOURIER transform, but it is still only competitive for very
long masks.

Theorem4.2.6and Theorem4.2.7states that the smoothness of a refinable function depends on the
number of factors12 · (1, 1) inm and on the remaining factorh. More precisely the spectral radius of either
Th or Th∗h∗ is the critical quantity. The number of factors12 · (1, 1) is easy to handle normally, but the
largest eigenvalue ofTh is not. Thus we will focus on the remaining maskh and% (Th).

4.2.8 Remark.According to Lemma2.2.27it is sensible to restrict our considerations to masksh with

sum1
(
ĥ(0) = 1

)
. Hence the sum of the coefficients ofh ∗ h∗ also equals1

(
ĥ ∗ h∗(0) =

∣∣∣ĥ(0)
∣∣∣2 = 1

)
.

According to Theorem4.2.6and Theorem4.2.7we will consider only matricesT of positive filter polyno-
mials and their filter coefficients will always sum up to1.

4.2.9 Notation. For brevity we want to use the variablesν andκ for the start and the end index of the filter
h.

ν = min(ixh)
κ = max(ixh)

Similar to Definition3.1.5we want to denote the size of the maskh with #h.

4.2.10 Lemma. The first and the last non-zero mask coefficient,hν andhκ respectively, are eigenvalues
of the matrixTh.

Proof. Expand the determinantdet(Th − λ · I) for the top and the bottom row.

There are some simple general ways of estimating the spectral radius of a matrix. E.g.% (Th) ≤ ‖Th‖
holds for any matrix norm. We will show that such estimates are too weak in some cases. This should
motivate the search for stronger estimates as presented at the end of this section.

The following statements show that the column and row sum matrix norms are bounded from below.
Thus estimates based on these norms cannot benefit from the fact that longer filters allow smaller spectral
radii.

4.2.11 Lemma.

1. If κ− ν is even, then the row sum norm of the matrixTh is at least1.
2. If κ− ν is odd, then the row sum norm of the matrixTh is at least12 .

Proof.

• Case2 | (κ− ν):
The ν+κ

2 th row ofTh which is the centre row consists of all mask coefficientshν , . . . , hκ thus

‖Th‖∞ = max
j∈ixh

∑
k∈ixh

∣∣∣(Th)j,k∣∣∣
≥
∑
k∈ixh

∣∣∣(Th) ν+κ
2 ,k

∣∣∣ =
∑
k∈ixh

|hk|

≥

∣∣∣∣∣∣
∑
k∈ixh

hk

∣∣∣∣∣∣ = 1

• Case2 - (κ− ν):
The ν+κ−1

2 th row of Th consists of all mask coefficients excepthκ and theν+κ+1
2 th row of Th
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consists of all mask coefficients excepthν and thus

‖Th‖∞ ≥ max
j∈{ ν+κ−1

2 , ν+κ+1
2 }

∑
k∈ixh

∣∣∣(Th)j,k∣∣∣
= max

{
|hν | , |hκ|

}
+

∑
k∈ixh\{ν,κ}

|hk|

≥ 1
2
· (|hν |+ |hκ|) +

∑
k∈ixh\{ν,κ}

|hk|

≥ 1
2
·

 ∑
k∈ixh

|hk|+
∑

k∈ixh\{ν,κ}

|hk|


≥ 1

2
·

1 +
∑

k∈ixh\{ν,κ}

|hk|


≥ 1

2

The column sum norm might be better suited.

4.2.12 Lemma.The column sum norm of the matrixTh is at least12 .

Proof. Forν = κ it must behν = 1 (Definition2.2.24) and thus‖Th‖1 = 1. Forν < κ the matrixTh has
at least two columns. We consider the first two:

‖Th‖1 = max
k∈ixh

∑
j∈ixh

∣∣∣(Th)j,k∣∣∣
= max
k∈{ν,ν+1}

∑
j∈ixh

∣∣∣(Th)j,k∣∣∣ = max
k∈{0,1}

∑
j∈[k]2

∣∣hj∣∣
≥ 1

2
·
∑

k∈{0,1}

∑
j∈[k]2

∣∣hj∣∣
≥ 1

2
·
∑
j∈ixh

∣∣hj∣∣
≥ 1

2
·

∣∣∣∣∣∣
∑
j∈ixh

hj

∣∣∣∣∣∣ = 1
2

4.2.13 Lemma.
1. If #h is even then the FROBENIUSnorm of the matrixTh is at least 1√

2
.

2. If #h is odd then the FROBENIUSnorm of the matrixTh is at least
√

#h−1
2·#h .

Proof. By counting the number of occurrences of each coefficient ofh in Th we obtain the following
relations.

• Case2 | #h:

‖Th‖2F =
#h
2
· ‖h‖22
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• Case2 - #h:

‖Th‖2F =
#h− 1

2
· ‖h‖22 +

∑
k∈[ν]2

|hk|2

The EUCLIDean norm ofh can be bounded by

‖h‖2 | inequality of quadratic and arithmetic mean

≥ 1√
#h
· ‖h‖1

∣∣∣ ∑
h = 1

≥ 1√
#h

and we obtain for both cases
1.

‖Th‖F =

√
#h
2
· ‖h‖2

≥
√

1
2

2.

‖Th‖F ≥
√

#h− 1
2

· ‖h‖2

≥

√
#h− 1
2 ·#h

.

So the lower bounds for the FROBENIUS norm are between the row sum norm and the column sum
norm.

It is clear that long filters allow for at least the smoothness of short filters simply because long filters
have additional degrees of freedom compared with short filters. The next statement quantifies this observa-
tion and gives a theoretical limit of the smoothness for a refinable function depending on the length of the
mask.

4.2.14 Lemma.The spectral radius of the matrixTh is always at least1#h .

% (Th) ≥
1

#h

Proof. We make use of the fact that the diagonal ofTh consist of all coefficients of the mask. We use the
index setixh for the eigenvaluesλj , too, although the eigenvalues do not correspond one-to-one to the
mask coefficients.

#h · max
j∈ixh

∣∣λj∣∣ ≥ ∑
j∈ixh

∣∣λj∣∣
≥

∣∣∣∣∣∣
∑
j∈ixh

λj

∣∣∣∣∣∣ = ∣∣trace(Th)
∣∣

=

∣∣∣∣∣∣
∑
j∈ixh

hj

∣∣∣∣∣∣ = 1
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However the estimate of the smoothness depending on the mask can be refined usingtrace
(
T 2
h

)
in-

stead oftraceTh. More generally we observe that ifTh has eigenvaluesλν , λν+1, . . . , λκ thenTnh has
eigenvaluesλnν , λ

n
ν+1, . . . , λ

n
κ. Thustrace(Tnh) =

∑
j∈ixh λ

n
j .

It is Th ·x = (h ∗x) � 2. With the help of Definition2.2.1and Lemma3.3.3we can express the matrix
power as convolution with subsequent down-sampling, as well.

Tnh · x =
(
Rnhδ ∗ x

)
� 2n

For brevity we substitute

Rnhδ = Hn .

We derive the matrix representation

Tnh =
(
(Hn)2n·j−k : (j, k) ∈ (ixh)2

)
.

We realize that the trace ofTnh is essentially a sum of selected coefficients ofHn, namely

trace(Tnh) =
∑
j∈ixh

(Hn)(2n−1)·j

=
∑(

Hn � (2n − 1)
)

.

It is not necessary to explicitly perform all convolutions which are involved inHn. We can save a lot of
computations if we compute cyclic convolutions with respect to the period2n − 1. Then the trace is given
by the zeroth coefficient of the cyclic convolution product.

4.2.15 Definition (Transformation to a periodic filter). We define the operatorCn from (Z → R) →
(Zn → R) which turns a straight filter into a circular one. The setZn is the ring of residue classes of
Z with respect ton, that isZn = Z/(n · Z). This means that the indices of the resulting periodic filter
are residue classes. The residue class denoted by[i]n is defined as{j : i ≡ j mod n}. [Str95, Example
6.21]

(Cnh)r =
∑
j∈r

hj

4.2.16 Remark.The usage of residue classes as indices allows us to easily adapt the definitions for
convolution and up-sampling for periodic filters. The filtersh and g must be of the same period, i.e.
{h, g} ⊂ Zn → R.

Down-sampling ∀c ∈ Z ∀k ∈ Zn (h � c)k = h[c]n·k

Up-sampling ∀c ∈ Z ∀k ∈ Zn (h ↑ c)k =
∑

j:k=[c]n·j

hj (4.2.1)

Convolution ∀k ∈ Zn (h ∗ g)k =
∑
j∈Zn

hj · gk−j

In contrast to straight signals a cyclic signal will not become shorter by down-sampling. Instead the signal
is padded periodically. A new property of the cyclic up-sampling is that it can lead to overlapping. These
are resolved by summing all overlapping values. Using this definition the following properties hold, namely
the transformation to the periodic filter commutes both with up-sampling and with convolution.

Up-sampling Cnh ↑ c = Cn(h ↑ c)
Convolution Cnh ∗ Cng = Cn(h ∗ g) (4.2.2)

However the equationCnh � c = Cn(h � c) does not hold in general. For example:

C2(1, 0,−1) � 2 = (0, 0) � 2 = (0, 0)
C2((1, 0,−1) � 2) = C2(1,−1) = (1,−1)
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Now we can formulate the computation of the trace as

trace(Tnh) =
(
C2n−1(Hn)

)
[0]

(4.2.3)

=
(
C2n−1

(
h ↑ 2n−1

)
∗ . . . ∗ C2n−1(h ↑ 2) ∗ C2n−1h

)
[0]

.

The last convolution need not to be performed completely since we are only interested in the[0]2n−1

indexed coefficient of the result. But we have still to performn − 2 cyclic convolutions. This can be
drastically reduced to about2 · log2 n convolutions by using the following recursion scheme. It expresses
the2 ·k and the2 ·k+1 times refinement in terms of thek times refinement. Thus in each recursion step the
number of refinements is halved. This scheme is also known for integer powers with respect to associative
operations such as the matrix multiplication.

C2n−1

(
H2·k

)
= C2n−1

(
Hk ↑ 2k

)
∗ C2n−1

(
Hk
)

= C2n−1

(
Hk
)
↑ 2k ∗ C2n−1

(
Hk
)

C2n−1

(
H2·k+1

)
= C2n−1h ↑ 22·k ∗ C2n−1

(
Hk
)
↑ 2k ∗ C2n−1

(
Hk
)

A 2k times refinement is the relative best case where we needk convolutions. A2k+1−1 times refinement
is the relative worst case where we need2 · k convolutions.

It is worth noting that the up-sampling is especially simple here because overlaps cannot occur. That is
up-sampling is just a rearrangement of coefficients.

4.2.17 Lemma. Let h ∈ Zq → R and letc andq be relatively prime integers, then the up-samplingh ↑ c
does not cause overlaps.

Proof. According to the definition of the cyclic up-sampling (4.2.1) the claim is equivalent to the statement
that for eachk from Zq there is only onej with k = [c]q · j. Sincec is relatively prime toq there is an

inverse[c]−1
q of [c]q in the ringZq. Thus for eachk there is exactly one associatedj, namely[c]−1

q · k.

In our situation it isq = 2n − 1 andc = 2k. They are relatively prime because the only prime factor of
c is 2 whereasq is odd. We can explicitly express the inverse as[c]−1

q = [2n−k]q.
Now we know how to reduce the number of convolutions but have not considered the convolutions

themselves. We know that the discrete FOURIER transform turns cyclic convolutions into multiplications
which dramatically speeds up the computation. We will also see that with the FOURIER transform we even
need no prior reduction of the number of convolutions.

4.2.18 Definition (DiscreteFOURIER Transform). TheDiscreteFOURIER Transformis a function from
(Zq → C)→ (Zq → C). For a cyclic signalh from Zq → C it is defined as:

z = e−
2·π·i
q

DFT(h)k =
∑
j∈Zq

hj · zk·j

Where the exponentiation with a set of numbers (resulting from the residue classk · j) is meant as expo-
nentiation with an arbitrary element of the set. This is unambiguous since all elements lead to the same
power.

4.2.19 Lemma (Inverse DiscreteFOURIER Transform). The Discrete FOURIER Transform can be in-
verted by

z = e
2·π·i
q

DFT−1(h)k =
1
q
·
∑
j∈Zq

hj · zk·j . [VK95]
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It follows that

h[0] = DFT−1(DFT(h))[0]

=
1
q
·
∑

(DFT(h)) . (4.2.4)

4.2.20 Lemma.The Discrete FOURIER Transform turns convolution into element-wise multiplication.

DFT(h ∗ g)k = DFT(h)k ·DFT(g)k

Thus using this transform we can simplify the convolution a lot.

DFT
(
C2n−1(Hn)

)
= DFT

(
C2n−1h ↑ 2n−1 ∗ . . . ∗ C2n−1h ↑ 2 ∗ C2n−1h

)
= DFT(C2n−1h ↑ 2n−1) · . . . ·DFT(C2n−1h ↑ 2) ·DFT(C2n−1h)

But we also want to reduce the number transforms to a minimum. Can we computeDFT(h ↑ c)
easily fromDFT(h)? For the continuous FOURIER transform and for the FOURIER series expansion we
know that dilation is turned into shrinkage. Analogously it isDFT(h ↑ c) = DFT(h) � c. If c is not
relatively prime to the length ofh thenh ↑ c involves summing of overlapping values, but on the other side
DFT(h) � c omits some FOURIER coefficients and periodically pads the remaining ones.

DFT
(
C2n−1(Hn)

)
= DFT(C2n−1h) � 2n−1 · . . . ·DFT(C2n−1h) � 2 ·DFT(C2n−1h)

In this representation we need to compute the FOURIER transform only once. Since2k and2n − 1 are
relatively prime the down-sampling is a plain rearrangement. To compute the total product we have to
perform(n − 1) · (2n − 1) multiplications. This can be reduced to at most(2n − 1) multiplications by a
more detailed analysis of the rearrangements. Thekth coefficient of the product of the FOURIER transform
is given by

DFT
(
C2n−1(Hn)

)
k

=
n−1∏
j=0

(
DFT(C2n−1h)

)
k·[2j ]2n−1

.

Since 1 ≡ 2n mod (2n − 1) the indices ofDFT(C2n−1h) in the product for the coefficients
DFT(C2n−1(Hn))k·[2m]2n−1

for specifick are only cycled depending onm. That is for fixedk and
varyingm the coefficientsDFT(C2n−1(Hn))k·[2m]2n−1

are equal.

The sequencek · [1]2n−1, k · [2]2n−1, . . . , k · [2n−1]2n−1 may contain equal elements. If two elements
are equal then their successors are equal, too. Thus equal elements lead to cycles.

This situation can be described by group theory as follows: There is a group(G, [1]2n−1, ·) with ele-

ments fromZ2n−1, namelyG =
{

[2j ]2n−1 : j ∈ {0, . . . , n− 1}
}

. The setG · x of all possible products

between elements ofG and a certain elementx fromZ2n−1 is called theorbit of x,G·x = {g · x : g ∈ G}.
The stabiliser (alsogroup of isotropy, [Str98, Theorem 17.14], [Wei05, Stabilizer]) ofx is the subgroup
fromG with the elements which letx unchanged, i.e.stabG(x) = {g : g ∈ G ∧ g · x = x}. For example,
for n = 6 it is G =

{
[1], [2], [4], [8], [16], [32]

}
and we obtain for instance

G · [5] =
{
[5], [10], [20], [40], [17], [34]

}
stabG([5]) =

{
[1]
}

G · [9] =
{
[9], [18], [36]

}
stabG([9]) =

{
[1], [8]

}
G · [21] =

{
[21], [42]

}
stabG([21]) =

{
[1], [4], [16]

}
.

According to [Bre05] there is a nice connection to the binary representation of the numbers. The multipli-
cation2 · x in Z2n−1 means rotating then digit binary representation ofx by one to the left. Thus if the
bit pattern ofx contains anm-periodic pattern then we obtainm distinct bit patterns by bit rotation, i.e.
#(G · x) = m. Indeed9 has the binary representation001001 and21 corresponds to010101.

In general it holds the following connection between the cardinalities ofG, of the orbit and of the
stabiliser:

#G = #(G · x) ·# stabG(x) .
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If #G is prime then the sequence[k]2n−1, [k · 2]2n−1, . . . , [k · 2n−1]2n−1 has prime length and there
cannot be true sub-cycles. In this case the set of indices{1, 2, . . . , 2n − 2} can be partitioned into2

n−2
n

orbits of sizen. That 2n−2
n is an integer can also be verified by FERMAT’s Little Theorem. The formula

gives an idea of how fast the number of orbits grows for increasingn, though we cannot give such a simple
expression for generaln.

We partition the set of all indices into orbits with respect to the powers of two, that is

K =
{
G · k : k ∈ Z2n−1

}
.

Orbits which overlap are equal. SinceK is an ordinary set, each orbit occurs only once. For each orbit we
have to evaluate a product, but since we do this only once per orbit this leads to a sophisticated computation
of the trace of the dyadic band matrix power. Starting from (4.2.3) and (4.2.4) we obtain

trace(Tnh) =
1

2n − 1
·
∑

k∈Z2n−1

DFT (C2n−1(Hn))k

=
1

2n − 1
·
∑
J∈K

#J ·

∏
j∈J

DFT(C2n−1h)j

n/#J

.

In this formula each coefficient of the FOURIER transformed signal is invoked only once. If we neglect the
organisation effort for the partition into orbits we achieve roughly linear time consumption with respect to
2n− 1. The slowest part of the computation is now the FOURIER transform which needs time proportional
to n · (2n − 1).

We have now derived an algorithm which needsl computation steps in order to periodically sum a filter
h of lengthl. For computing the trace of then-th power of the dyadic band matrix ofhwe need computation
time proportional ton · 2n. That is the computation power increases exponentially with respect ton. In
contrast to that with a slightly optimised implementation of the matrix power we can compute the trace in
about2 · log2 n · l2 steps. We realise that the algorithm based on cyclic convolution can only compete for
very smalln. Especially fortrace(T 2

h) it turns out to be very handy. We will concentrate on this case for
the rest of this section. It is

trace(T 2
h) =

∑
(C3h ↑ 2 ∗ C3h)

because2 ≡ −1 mod 3
=
∑

(C3h ↑ (−1) ∗ C3h)

= (C3h)2[0] + (C3h)2[1] + (C3h)2[2] .

4.2.21 Theorem.For a given maskh with finite support lety = C3h andBh =
√
y2
[0] + y2

[1] + y2
[2]. Then

a lower bound for the spectral radius is given by

1√
#h
·Bh ≤ % (Th) .

If the eigenvalues ofTh are all real then there is a simple upper bound:

% (Th) ≤ Bh .

Proof.
1.

#h · max
j∈ixh

∣∣λj∣∣2 ≥ ∑
j∈ixh

∣∣λj∣∣2
≥

∣∣∣∣∣∣
∑
j∈ixh

λ2
j

∣∣∣∣∣∣
=
∣∣∣trace(T 2

h)
∣∣∣ = B2

h
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2.

max
j∈ixh

∣∣λj∣∣2 ≤ ∑
j∈ixh

∣∣λj∣∣2
=
∑
j∈ixh

λj
2 = B2

h

4.2.22 Remark.One might hope that the eigenvalues of matrices of the formTh∗h∗ are always real. The
exampleh = (2, 0, 0,−1) disproves this assumption. It ish ∗ h∗ = (−2, 0, 0, 5, 0, 0,−2) andTh∗h∗ has
the eigenvalues±1± 3i,−2,−2, 5.

Indeed there is a family of filtershwhich lead to a constant value ofBh∗h∗ according to Theorem4.2.21
while the spectral radius ofTh∗h∗ is not bounded. Such a family is

{
(1 + x, 0, 0,−x) : x ∈ R

}
.

4.2.23 Remark.One might also assume that the existence of a complementary filterg (i.e. a filterg such
thath andg allow for perfect reconstruction, see Definition2.2.9) already implies that all eigenvalues of
Th∗h∗ are real. This is also not true since forh = (2, 0, 0,−1), g = (0, 0, 1, 0) the filterg is complementary
to h.

Whether the spectral radius is closer to the upper bound or closer to the lower bound depends on the
distribution of the eigenvalues of the matrixTh. In the case that the eigenvalues have similar magnitude
the spectral radius will be close to the lower bound. If there are only a few large eigenvalues and many
small ones then the spectral radius will be close to the upper bound.

A simple lower estimate for the spectral radius that does not depend on the filter coefficients is given
by

4.2.24 Lemma.

% (Th) ≥
1√

3 ·#h
.

Proof. We derive this from Theorem4.2.21using the inequality of quadratic and arithmetic mean√
1
3
·
(
y2
[0] + y2

[1] + y2
[2]

)
≥ 1

3
·
(
y[0] + y[1] + y[2]

)
1√
3
·Bh ≥

1
3

and the last holds because

y[0] + y[1] + y[2] =
∑

h = 1

due to Remark4.2.8.

4.2.25 Corollary. For a refinable function or distributionϕ with respect toh (containing no smoothness
factor 1

2 · (1, 1)!) the computation of the SOBOLEV smoothness according to Theorem4.2.7yields the
estimate

s0 =
1
2
·Mh∗h∗

=
1
2
· (−1− log2 % (Th∗h∗))

≤ 1
2
·

(
−1− log2

1√
3 ·#(h ∗ h∗)

)

=
1
2
·
(
−1 +

1
2
· log2(3 · (2 ·#h− 1))

)
≤ 1

4
· log2

(
3
2
·#h

)
.
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This means that apart from adding smoothness factors the bound for the SOBOLEV smoothness can be
increased by 1 only if the mask length grows by a factor of 16! The mask (free of smoothness factors) of a
refinable function fromH1

2 (R) must have at least length 11 (32
3 ).

We will now consider an optimisation for estimating the SOBOLEV smoothness ofϕ. According to
Theorem4.2.7we have to processh ∗ h∗ instead of the pure filter maskh to that end. ThenBh∗h∗ =√∑

j∈Z3

(
C3(h ∗ h∗)

)2
j
. Because the periodic summation and the cyclic convolution commute ((4.2.2)

from Remark4.2.16) we can avoid the need for an explicit convolutionh ∗ h∗. With y as defined in
Theorem4.2.21and

p1 = y[0] + y[1] + y[2] = 1
p2 = y2

[0] + y2
[1] + y2

[2]

we obtain

(C3(h ∗ h∗))[0] = y[0] · y[0] + y[1] · y[1] + y[2] · y[2] = p2

(C3(h ∗ h∗))[1] = y[0] · y[1] + y[1] · y[2] + y[2] · y[0] =
p2
1 − p2

2

(C3(h ∗ h∗))[2] = y[0] · y[2] + y[1] · y[0] + y[2] · y[1] =
p2
1 − p2

2
and thus

Bh∗h∗ =

√
p2
2 + 2 ·

(
1− p2

2

)2

=

√
3
2
·
(
p2 −

1
3

)2

+
1
3

.

4.2.4 Examples

We will now compare our simple estimates with the exact regularities provided by Theorem4.2.7for two
standard families of wavelet bases. The considered wavelet bases have filter polynomials that are not
positive in general thus the HOELDERsmoothness estimate according to Theorem4.2.6is derived from the
SOBOLEV smoothness. Hence we only consider estimates of the SOBOLEV smoothness. The orthogonal
DAUBECHIES wavelets as well as the biorthogonal COHEN-DAUBECHIES-FEAUVEAU wavelets (CDF)
are chosen because they can be automatically constructed up to high orders (see [Dau92, Sections 6.1 and
8.3.4]). The considered filter masks lead to transition matrices with real eigenvalues and thus both estimates
of Theorem4.2.21can be applied.

The complete algorithm for estimating the SOBOLEV smoothness is
1. Letm be the filter mask.

2. Dividem by the highest possible power
(

1
2 · (1, 1)

)K
(alternatively dividêm(ξ) by

(
1 + e−i·ξ

)K
),

the quotient ish.
3. Compute the sumsyk =

∑
j∈Z hk+3·j for k ∈ {0, 1, 2}.

4. Compute the square sump2 = y2
0 + y2

1 + y2
2 .

5. ComputeBh∗h∗ =

√
3
2 ·
(
p2 − 1

3

)2

+ 1
3 .

6. Eventually the SOBOLEV smoothness limits0 is bounded by

s0 ≤ K − log4 (2 ·Bh∗h∗) +
1
2
· log4 (2 ·#h− 1)

and further if one knows that the eigenvalues are all real then

K − log4 (2 ·Bh∗h∗) ≤ s0 .

4.2.26 Remark.Step2 is numerical critical because the resulting filter has coefficients that vary heavily in
magnitude. Thus even the simple criterion of the sum of the coefficients being1 is violated!
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Figure 4.2: SOBOLEV smoothness of DAUBECHIES wavelets (Nφ as in [Dau92], 1φ is the
HAAR generator) depending on the order of the wavelets.

Orthogonal DAUBECHIES wavelets

For a given power of the factor12 · (1, 1) in m (this is considered as theorder) the DAUBECHIES wavelet
filter is the shortest one that leads to an orthogonal wavelet basis. Actually there are several filters possible
for one order but they all share the same filterm∗m∗ and thus the same SOBOLEV smoothness. Figure4.2
shows that the upper estimate of the smoothness is at most1.5 too high and the lower estimate at most0.5
too low.

Biorthogonal spline wavelets (CDF)

In contrast to orthogonal bases the CDF wavelet basis consists of two different generator functions, that are
a primal and a dual generator. The dual generatoreN φ̃ is a Ñ th order B-spline, its Sobolev smoothness is

s0 = Ñ − 1
2 and this is also the result of our estimate due to Theorem4.2.21since the filter consists only

of a power of12 · (1, 1) and the eigenspectrum of the transition matrix of the remaining filter of length 1
will be estimated exactly.

That is why the more interesting function is the primal generatoreN,Nφ whose filter contains theN th

power of 1
2 · (1, 1) and the remaining filter depends only onN+ eN

2 . The dependency onN is clear thus
we content ourselves with the analysis of

(
N,Nφ : N ∈ N

)
which is a sequence of functions of decreasing

smoothness as can be seen in Figure4.3.
The maximum deviation from the lower bound is0.4 and the deviation from the upper bound is at most

1.5.

4.3 Enhancing the smoothness of primal generators

In the previous section we have learnt how to compute the smoothness of refinable functions. We are now
going to add the smoothness of the primal generator to the optimisation derived in Section3.3.2. The
smoothness is determined by the number of smoothness factors1

2 · (1, 1) in the mask and the spectral
radius of the transition matrix of the remaining mask. Thus there are two approaches to make the primal
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Figure 4.3: SOBOLEV smoothness of the CDF primal generatorN,Nφ depending on the order
N .

generator smoother. On the one hand we can increase the number of smoothness factors and on the other
hand we can decrease the spectral radius connected to the remaining mask. The first approach is targeted
at a discrete parameter with a predictable influence and the second one deals with continuous parameters
which requires non-linear optimisation techniques.

4.3.1 Reducing the spectral radius

Due to Corollary4.2.25the smoothing effect of spectral radius reduction is not big. Nonetheless sometimes
one can get a bit more smoothness when giving up some smoothness factors [Oja98] and replacing them
by general factors which minimise the spectral radius.

Let σ from R × `0 (Z) → R be a smoothness (or better: roughness) estimate. We add it as a penalty
term to our optimisation criterion.

argmin
(c,s)

(
‖c · ψ + s ∗ ϕ− f‖2 + σ(c, s)

)
Note that the power of the term for the difference of wavelet and pattern is irrelevant for the optimisation

result of pure matching. Since we add a penalty term it is now worth considering the power in more detail.
It holds

argmin
(c,s)

(
‖c · ψ + s ∗ ϕ− f‖2

)
= argmin

(c,s)

(
‖c · ψ + s ∗ ϕ− f‖22

)
.

In contrast to the function(c, s) 7→ ‖c · ψ + s ∗ ϕ− f‖2 without a power the function(c, s) 7→
‖c · ψ + s ∗ ϕ− f‖22 is differentiable (also at the minimum) and the derivative is a linear operator. So
we change the minimisation criterion to

argmin
(c,s)

(
‖c · ψ + s ∗ ϕ− f‖22 + σ(c, s)

)
.

There are several sensible choices forσ. All of them are based on the SOBOLEV smoothness which
is determined by the eigenvalue spectrum of the transition matrix. Since we have (still) no constraint on
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the number of smoothness factors in the low-pass smoothness factors will occur only accidentally in the
low-pass and we skip an extra handling of them.

Given the low-passh (corresponding toϕ) and the high-passg (corresponding toψ) the maskg′ of
the matched high-pass isg′ = g + 1

c · (s ↑ 2) ∗ h. According to Definition2.2.12the dual low-pass is

h̃′ = (g′ ← 1)−. Eventually we obtain the transition matrixM of the dual low-pass (M = T eh′∗ eh′∗ ) whose
spectral radius depends decreasingly on the smoothness of the generator. That is, the smaller the spectral
radius the smoother the generator.

With the dependency ofM ons andc in mind we can describe some choices forσ.

• The spectral radius ofM is the exact choice, i.e.σ(c, s) = % (M). But it needs more computation
than the alternatives below and it is numerically not as stable as other ones.

• The sum of the squares of the eigenvalues ofM , i.e. σ(c, s) = traceM2, can be computed very
efficiently (Theorem4.2.21). But it is only an upper bound if all eigenvalues are real and since we
cannot assert that we cannot use this estimate here, unfortunately.

• The sum norm ofM , i.e.σ(c, s) = ‖M‖1
• The FROBENIUS norm ofM , i.e.σ(c, s) = ‖M‖F . This is similar to

∥∥∥h̃′ ∗ h̃′∗∥∥∥
2
, which is equal

to

∥∥∥∥∥ξ 7→
∣∣∣∣ ̂̃h′(ξ)∣∣∣∣2

∥∥∥∥∥
2

. Because the mapping froms to h̃′ is affine, the mapping tỗh′ is linear and the

norm is convex, the mapping froms to

∥∥∥∥∥ξ 7→
∣∣∣∣ ̂̃h′(ξ)∣∣∣∣2

∥∥∥∥∥
2

is convex. A mapping with respect toc

is certainly not convex. In practice both the FROBENIUS norm and the autocorrelation norm have
exhibited the best numerical stability.

Because of the division byc in the lifting step the magnitude ofc is essential. Small values ofc lead
to big lifting coefficients and big coefficients ing′ andh̃′. Big coefficients inh̃′ lead to large estimates of
the spectral radius and tend to produce large eigenvalues. This is the reason why the optimisation with a
penalty term mainly increasesc. Eventually the practice shows that without support by smoothing factors
in the opposite basis it is hardly possible to achieve considerable smoothness or at least regular functions
as generators. Figure4.4shows an example.

4.3.2 Adding smoothness factors

In the optimisation approach we derived in Section3.3.2we could choose the low-pass filterh freely. The
choice ofh limits the choices of complementary high-pass filtersg. The dual low-pass filter̃h depends
only ong by h̃ = (g ← 1)− (Definition2.2.12). How can we assert thath̃ contains, say,m times 1

2 · (1, 1),
i.e.

∃h̃′ h̃ = h̃′ ∗
(

1
2
· (1, 1)

)∗m
?

This question was already answered in Theorem2.2.18. With the connectioñh′ = (g′ ← 1)− this property
is equivalent to

∃g′ g = g′ ∗
(

1
2
· (1, 1)

)∗m
−

and

∃g′ g = g′ ∗
(

1
2
· (1,−1)

)∗m
. (4.3.1)

We realize thatm factors1
2 · (1, 1) in the dual low-pass filter̃h are equivalent tom factors1

2 · (1,−1)
in the primal high-pass filterg. Figure4.5shows how these factors affect generator and wavelet functions.
Convolving with the mask12 ·(1,−1) means computing differences. This mask factor is related to vanishing
moments which are introduced in the following section.
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Figure 4.4: Match of wavelets with reduced spectral radius of the transition matrix. For high
weighting of the smoothness term the optimisation process becomes numerically unstable. We
show here the result of highest possible weighting using the FROBENIUScriterion.

Vanishing moments

4.3.1 Definition (Moment). The sequenceM of moments is a sequence of functionals fromN0 → (R→
R)→ R. If

(
t 7→ f(t) · tj

)
∈ L1 (R) then thejth moment of a functionf is defined by

Mjf =
∫

R

(
t 7→ f(t) · tj

)
.

4.3.2 Remark.
• The zeroth moment is the ordinary integral. If it is limited to an interval of lengthl thenM0f

l is often
referred to as thedirect current component.

• The first moment is the torsional moment if the function is considered as the mass distribution of a
stick. If the function is translated until the torsional moment becomes zero (M1(f ← x) = 0) you
find the centrex of gravity. It can be computed byx = M1f

M0f
.

4.3.3 Definition (Vanishing moments).A vanishing momentis a moment of a function that is zero. A
functionf hasm vanishing moments (m > 0) if

∀j ∈ {0, . . . ,m− 1} Mjf = 0 .

4.3.4 Remark.There are other characterisations for vanishing moments. Here are four alternative charac-
terisations.

1. Scalar product with polynomial functions
The functionalMj computes a scalar product with a power function with exponentj. The power
functions for exponents from0 tom− 1 are a basis for all polynomials of degree untilm− 1. Thus
we can state:
The functionf hasm vanishing moments if and only if the scalar product off with any polynomial
of degree up tom− 1 is zero.
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Figure 4.5: Shifting the factor12 · (1, 1) from the low-pass to the high-pass let the pair of
generator and wavelet of CDF-3,1 basis turn to that of CDF-2,2, and CDF-1,3. In each step the
smoothness decreases and the number of vanishing moments of the wavelet increases.
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2. Convolution with polynomial functions
The space of polynomial functions up to a certain degree is invariant with respect to translation of
the functions. Therefore iff hasm vanishing moments, then each translate of the functionf hasm
vanishing moments, too. Further ifp is a polynomial function with a degree belowm then not only
〈f, p∗〉 = 0, but evenf ∗ p = 0.
Converselym distinct translates of a polynomial functionp of degreem − 1, say all neighbouring
integral translates ofp, constitute a basis of the space of all polynomial functions of degree below
m. Thus if for a polynomial function of degreem − 1 holdsf ∗ p = 0 thenf hasm vanishing
moments.
Summarised: Letp be a polynomial function of degreem − 1. The functionf hasm vanishing
moments if and only iff ∗ p = 0.

3. Zeros of the FOURIER symbol
It is possible to characterise the number of vanishing moments by multiplicity of zeros in the fre-
quency domain.

f̂(0) =
∫

R
f

f̂ ′ = F(t 7→ −i · t · f(t))

f̂ ′(0) = −i ·
∫

R

(
t 7→ t · f(t)

)
f̂ (n)(0) = (−i)n ·

∫
R

(
t 7→ tn · f(t)

)
Consequently iff̂ ∈ Cm (R), thenf hasm vanishing moments if and only if̂f hasm zeros at0,
i.e.

∀j ∈ {0, . . . ,m− 1} f̂ (j)(0) = 0 .

This allows for a generalisation: Anmth order pole off̂ at 0 can be considered as−m vanishing
moments.

4. Derivatives of well behaved functions
If f̂ is continuous in0 thenω 7→ ωm · f̂(ω) has anmth order zero at0. Thus if f̂ is continuous in

0, f is m times differentiable and, say,∀j ∈ {0, . . . ,m} f̂ (j) ∈ L2 (R) (i.e. f ∈ Wm
2 (R)) then

according to the previous itemf (m) hasm vanishing moments. Consequently them times integral
of f has−m vanishing moments.

We will now see that the number of factors1
2 · (1,−1) in the high-pass filter is equal to the number of

vanishing moments in the corresponding wavelet.

4.3.5 Lemma.
Prerequisite. Letϕ be a function fromL1 (R) with no vanishing moment.
Claim. The function2 · (g ∗ ϕ) ↓ 2 hasm vanishing moments if and only ifg has the factor(1,−1)∗m.

Proof. It is easier to perform the proof in the frequency domain.

F(2 · (g ∗ ϕ) ↓ 2) = (ĝ · ϕ̂) ↑ 2

• (1,−1)∗m | g implies that2 · (g ∗ ϕ) ↓ 2 hasm vanishing moments
Let g = (1,−1)∗m ∗ g′.

̂(1,−1)(ω) = 1− e−i·ω

F(g ∗ ϕ)(ω) = F
(
(1,−1)∗m ∗ g′ ∗ ϕ

)
(ω)

=
(
1− e−i·ω

)m
· ĝ′ ∗ ϕ(ω)

That is the FOURIER transform ofg ∗ ϕ has a zero of orderm at 0. From the frequency domain
characterisation given above it follows that this function hasm vanishing moments.
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Figure 4.6: Functions with increasing number of vanishing moments: Derivatives of a
GAUSSian (t 7→ e−t

2
). The GAUSSian has zero vanishing moments and each differentiation

adds one vanishing moment. We observe that a higher number of vanishing moments tend to let
a function oscillate.

• 2 · (g ∗ ϕ) ↓ 2 hasm vanishing moments implies that(1,−1)∗m | g
Becausêϕ(0) 6= 0 the function(ĝ · ϕ̂) ↑ 2 can have anmth order zero at0 only if ĝ has anmth order
zero at0. Sinceg is a polynomial anmth order zero can only be caused by the convolutional factor
(1,−1)∗m.

If the analysing wavelet hasm vanishing moments then the correlations of the analysing wavelet with
polynomials up to degreem − 1 are zero. Thus these polynomials are represented by the low-pass band
only.

If the discrete input signalx of the wavelet transform is not considered as representation for the con-
tinuous functionx ∗ ϕ but as a discrete sequence thenm vanishing moments guarantee that the low-pass
band coefficients represent the discrete polynomial functions up to degreem.

We recall that ifh andg are complementary filters then all high-pass filters complementary toh can be
represented by the lifting step

gs = g + (s ↑ 2) ∗ h .

All lifted filters constitute an affine space. We will see that the high-pass filters withm vanishing moments
form an affine subspace of this space.

Becauses can be0 the un-lifted high-pass filterg belongs to this subspace. Thus it must havem
vanishing moments. We are now interested in lifting steps that preserve the vanishing moments ofg. In
the optimisation target we add the convolution ofh with the up-sampled lifting filters to g. How are the
vanishing moment factors distributed overh ands ↑ 2? The low-pass filterh must not have any vanishing
moment, otherwiseg andh share a common divisor and are not complementary, cf. Corollary2.2.8. Thus
s ↑ 2 must contain all vanishing moment factors.

But the lifting filter must be in the up-sampled form, that is all odd indexed coefficients must be zero.
If (1,−1) is a factor ofs ↑ 2 then(1,−1)−, that is(1, 1), is a factor of(s ↑ 2)−. Since(s ↑ 2)− = s ↑ 2,
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also(1, 1) is a factor ofs ↑ 2. Thus(1,−1)∗ (1, 1) which equals(1, 0,−1) is a factor ofs ↑ 2 and(1,−1)
is a factor ofs. The same applies to powers of(1,−1).

To get all high-pass filtersgs with m vanishing moments we need an initial high-pass filterg and the
lifting step

gs = g + (s ↑ 2) ∗ (1, 0,−1)∗m ∗ h
and the optimisation problem is modified to

argmin
c,s

∥∥∥c · ψ + s ∗ (1,−1)∗m ∗ ϕ− f
∥∥∥

2
.

Figure4.7shows examples of matching wavelets with vanishing moment constraints.

Uncouple vanishing moments and smoothness

In equation (4.3.1) we have seen that smoothness factors1
2 · (1, 1) of the dual low-pass̃h are tightly

connected to the vanishing moment factors1
2 ·(1,−1) of the primal high-passg, namelym dual smoothness

factors are equivalent tom primal vanishing moments.
But vanishing moments have a strong influence on the shape of a wavelet. If the wavelet is forced to

havemψ vanishing moments and the pattern has more vanishing moments, saymf (mf > mψ), we have
no problems since then the wavelet can get additional moments by the lifting. But ifmf < mψ then the
match will not be very good, as the Figure4.7shows.

It seems that we need a way for decoupling the vanishing moments of the primal wavelet from the
smoothness factors of the dual generator. We see three methods to attack this problem: Preprocess the
pattern before matching, preprocess the input signal before each wavelet transform, modify the transform
itself.

1. Preprocess the pattern in order to increase the number of vanishing moments. Preprocess the input
signal in the same way in order to increase the number of vanishing moments of the contained
patterns. LetP be a preprocessing which increases the number of vanishing moments bymψ −mf

Then we have to choose a waveletψ with mψ vanishing moments and solve

argmin
c,s

(∥∥c · ψ + s ∗ (1,−1)∗mψ ∗ ϕ− Pf
∥∥

2

)
.

If we want to preprocess the input only once this global preprocessingP must have a comparable
effect on each scale, i.e.

∀k ∈ Z ∃c ∈ R P (f ↑ 2k) = c · Pf ↑ 2k .

Thus discrete differences cannot be used. Differentiation fulfils this property and increases the
number of vanishing moments but it cannot be applied to discrete data. Even more by matching a
differentiated pattern with a wavelet we change the norm used in the optimisation criterion. Dif-
ferentiation amplifies high frequencies thus the optimisation will result in a matched wavelet where
the high frequencies match much better than the low ones. I.e. details or even high frequent noise
are more respected than the overall shape of the pattern.

2. Match the pattern with a wavelet wheremψ − mf vanishing moments are omitted. That is we
choose a complementary filter pair(h, g) and separate some vanishing moment factors fromg, i.e.
g = (1,−1)∗(mψ−mf ) ∗ g′. The waveletψ′ corresponding tog′ has onlymf vanishing moments.
We use it instead ofψ for the matching.

ψ′ = (g′ ∗ ϕ) � 2

argmin
c,s

(∥∥c · ψ′ + s ∗ (1,−1)∗mf ∗ ϕ− f
∥∥

2

)
When using the matched wavelet in a DWT the omitted vanishing moments are involved in or-
der to achieve perfect reconstructability. The input signal must be preprocessed for obtain match-
ing qualities. This means that the input must be convolved with an inversew of (1,−1) such
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Figure 4.7: Match of wavelets with patterns with vanishing moments: A clipped ramp function
is matched with a wavelet associated with the quadratic spline generator (CDF-3). The pattern
has one vanishing moment. If the wavelet is constraint with one vanishing moment (left column)
the match is quite good. If too much vanishing moments are forced (right column: 5 vanishing
moments) the match is not satisfying. (Even more in this example the coefficientc of ψ is rather
small, which is numerically bad for reconstruction.)
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∗
√

2 · h � 2 . . . ↑ 2 ∗
√

2 · h̃

/∗(1,−1) + ∗(1,−1)

∗
√

2 · g � 2 . . . ↑ 2 ∗
√

2 · g̃

/∗(1,−1) ∗
√

2 · h � 2 . . . ↑ 2 ∗
√

2 · h̃

+ ∗(1,−1)

∗
√

2 · g′ � 2 . . . ↑ 2 ∗
√

2 · g̃

Figure 4.8: Subband coder including a integration pre- and difference post-processing. The
first variant uses explicit integration and differentiation whereas in the second variant matching
integration and vanishing moment factors are cancelled.

as (. . . , 0, 0,1, 1, 1, . . . ) or (. . . ,−1,−1,0, 0, 0, . . . ). The signal must be preprocessed at each
transformation level within the analysis transform and the signal has to be post-processed on the
synthesis transform. (Figure4.8)
Instead of the original DWT

Analysis xj+1 =
√

2 ·
(
xj ∗ h

)
� 2

yj+1 =
√

2 ·
(
xj ∗ g

)
� 2

Synthesis xj =
√

2 ·
((

xj+1 ↑ 2
)
∗ h̃+

(
yj+1 ↑ 2

)
∗ g̃
)

we compute

Analysis x′j = w∗(mψ−mf ) ∗ xj

xj+1 =
√

2 ·
(
x′j ∗ h

)
� 2

yj+1 =
√

2 ·
(
x′j ∗ g

)
� 2

Synthesis xj =
√

2 ·
((

xj+1 ↑ 2
)
∗ h̃+

(
yj+1 ↑ 2

)
∗ g̃
)
∗ (1,−1)∗(mψ−mf ) .

The integration ofxj and the vanishing moments ofg can be merged. This is just the reduction
from g to g′ which yieldsx′j ∗ g = xj ∗ g′. We can formulate the transform by

Analysis xj+1 =
√

2 ·
(
w∗(mψ−mf ) ∗ xj ∗ h

)
� 2

yj+1 =
√

2 ·
(
xj ∗ g′

)
� 2

Synthesis xj =
√

2 ·
((

xj+1 ↑ 2
)
∗ h̃+

(
yj+1 ↑ 2

)
∗ g̃
)
∗ (1,−1)∗(mψ−mf ) .

The problem is obviously that the signal must be integrated for the low-pass channel which leads
to potentially unlimited signal values. Even more the integration is repeated in each level of the
transform.

3. The problem of the previous approach is that the low-pass band contains the integrated data and
in each transformation level it is integratedmψ − mf times, again. Can we simply omit the in-
tegration? Certainly not since this would prohibit perfect reconstruction. But we notice that the
high-pass analysis-synthesis path of the transform discussed in the previous item is quite that of
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∗
√

2 · h � 2 . . . ↑ 2 ∗
√

2 · h̃

+

∗
√

2 · g′ . . . ∗v � 2 ↑ 2 ∗
√

2 · g̃

Figure 4.9: A double density subband coder which defers some vanishing moment factorsv
from the analysis high-pass to the synthesis part. It allows to match patterns with few vanishing
moments while the connected generator function has more smoothness factors.

the original DWT, only the convolution with some vanishing moment factors is deferred to the syn-
thesis. We can achieve the same effect by modifying the DWT such that the application of the
vanishing moment factors is deferred to the synthesis. Since the down-sampling is applied after the
analysis convolution it must be deferred, too. This results in a synthesis step where all odd-indexed
signal values are cleared. (Figure4.9)

Analysis xj+1 =
√

2 ·
(
xj ∗ h

)
� 2

yj+1 =
√

2 · xj ∗ g′

Synthesis xj =
√

2 ·

((
xj+1 ↑ 2

)
∗ h̃+

((
yj+1 ∗ (1,−1)∗(mψ−mf )

)
� 2 ↑ 2

)
∗ g̃

)
.

The optimisation problem for matching the wavelet is the same as in the previous item.

The last of the three suggestions is certainly most promising. It is known to the literature by the term
double-density DWT[Sel01]. Let us elaborate on it.

4.3.3 Double density transform

The transform differs from the critically sampled DWT in the point that the down-sampling is omitted in
the analysis high-pass path, i.e. in the path which is not cascaded. That is why the amount of data of the
wavelet transform (only) doubles. The wavelet basis turns into a wavelet frame. Although we chose the
discrete wavelet transform in order to avoid redundancy the slight redundancy we get by our modification
leads to a slightly more shift-invariant transform.

According to the multichannel transform presented in Section2.2.5we can create polyphase matri-
ces for the analysis and the synthesis transform. The analysis transform can be described by the matrix
convolution

 xj+1

yj+1 � 2
yj+1 → 1 � 2

 =
√

2 ·

 h � 2 h← 1 � 2
g′ � 2 g′ ← 1 � 2

g′ → 1 � 2 g′ � 2

~

(
xj � 2

xj → 1 � 2

)
.
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The polyphase matrix for the synthesis needs some prior reflection.

v = (1,−1)∗(mψ−mf )

1√
2
· xj � 2 =

((
xj+1 ↑ 2

)
∗ h̃+

(
(yj+1 ∗ v) � 2 ↑ 2

)
∗ g̃
)

� 2

= xj+1 ∗ (h̃ � 2) +
(
(yj+1 ∗ v) � 2

)
∗ (g̃ � 2) | Lemma2.2.3

= xj+1 ∗ (h̃ � 2) +
(
(yj+1 � 2) ∗ (v � 2) + (yj+1 → 1 � 2) ∗ (v ← 1 � 2)

)
∗ (g̃ � 2)

1√
2
· xj → 1 � 2 = xj+1 ∗ (h̃→ 1 � 2)+(

(yj+1 � 2) ∗ (v � 2) + (yj+1 → 1 � 2) ∗ (v ← 1 � 2)
)
∗ (g̃ → 1 � 2)(

xj � 2
xj → 1 � 2

)
=
√

2 ·

(
h̃e ve ∗ g̃e vo ∗ g̃e

h̃o→ 1 ve ∗ g̃o→ 1 vo ∗ g̃o→ 1

)
~

 xj+1

yj+1 � 2
yj+1 → 1 � 2


It is left as an exercise for the reader to check whether the dual polyphase matrix is a left inverse of the

primal polyphase matrix (multiply and check for identity matrix). :-)
After having discussed the discrete aspect of the modified transform we want to find out what it means

for the continuous interpretation of the transform. A critically sampled transform overn levels is equal to
computing the scalar products of the signal with the primal wavelet and generator functions from the set{

(ϕ∗ → k) ↑ 2n : k ∈ Z
}
∪
{

(ψ∗ → k) ↑ 2j : k ∈ Z ∧ j ∈ {1, . . . , n}
}
,

which forms a basis (compare with Theorem2.2.39). In contrast to that the modified transform computes
scalar products with respect to the frame

{
(ϕ∗ → k) ↑ 2n : k ∈ Z

}
∪
{

(ψ∗ → k) ↑ 2j : k ∈ 1
2
· Z ∧ j ∈ {1, . . . , n}

}
.

That is the lattice of the wavelets is twice as narrow as in the critically sampled transform.
It is a bit more difficult to derive what happens on the dual basis. Let us repeat that the continuous recon-

struction of the original DWT at scalej is computed by
(
yj ↑ 2 ∗ g̃ ∗ ϕ̃

)
↑ 2j−1 or shortly

(
yj ∗ ψ̃

)
↑ 2j

. We obtain the dual basis functions by choosing unit vectors foryj , i.e. wavelet representations where
only one coefficient is one while all others are zero. This yields the dual basis{

(ϕ̃→ k) ↑ 2n : k ∈ Z
}
∪
{

(ψ̃ → k) ↑ 2j : k ∈ Z ∧ j ∈ {1, . . . , n}
}

.

For the modified DWT the continuous reconstruction is computed by((
yj ∗ (1,−1)∗(mψ−mf )

)
� 2 ↑ 2 ∗ g̃ ∗ ϕ̃

)
↑ 2j−1

or shortly ((
yj ∗ (1,−1)∗(mψ−mf )

)
� 2 ∗ ψ̃

)
↑ 2j ,

that is the dual frame is{
(ϕ̃→ k) ↑ 2n : k ∈ Z

}
∪
{(

(1,−1)∗(mψ−mf ) → k � 2 ∗ ψ̃
)
↑ 2j : k ∈ Z ∧ j ∈ {1, . . . , n}

}
.
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Because of the translation inside the down-sampling we obtain two kinds of wavelets. In one wavelet
the even indexed coefficients of the power of the vanishing moment mask are included, in the other one the
odd indexed coefficients are. This leads to the frame representation{

(ϕ̃→ k) ↑ 2n : k ∈ Z
}

∪
{(

(1,−1)∗(mψ−mf ) � 2 ∗ ψ̃ → k
)
↑ 2j : k ∈ Z ∧ j ∈ {1, . . . , n}

}
∪

{((
(1,−1)∗(mψ−mf ) → 1

)
� 2 ∗ ψ̃ → k

)
↑ 2j : k ∈ Z ∧ j ∈ {1, . . . , n}

}
.

Figure4.10shows these functions for wavelets matching thesinc function for different orders of smooth-
ness.

Let us recapitulate how we arrived here. We started with the discrete wavelet transform, introduced
tools to create wavelets matching patterns while satisfying the requirements of the transform. Now we
end up with a modified transform. Are the requirements still the same? They are certainly sufficient but
do we have more degrees of freedom now? Should we switch to a lifting scheme which is adapted to the
non-square polyphase matrix? These are still open questions.

4.3.4 Conclusion

In this chapter we complemented the matching algorithm from Chapter3 with smoothness constraints
for both primal and dual wavelets. We have seen that the smoothness of a refinable function depends on
the number of smoothness factors in the refinement mask and the roughness of the refinable function (or
distribution) associated with the remaining mask. The roughness corresponds to the spectral radius of the
transition matrix. This in turn can be efficiently estimated by various matrix norms and the sum of powers
of the transition eigenvalues. Using these estimates we can setup a regularised optimisation problem which
can be solved by some numerical minimiser. We found that the roughness is bounded to below depending
on the refinement mask size.

In contrast to the reduction of the spectral radius of the transition matrix, adding smoothness factors to
the refinement mask has the stronger effect. But it also increases the number of vanishing moments which
is bad for matching patterns with a small number of vanishing moments. A double density transform
is a possible way to decouple smoothness factors and vanishing moments at the expense of a redundant
transform.
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Figure 4.10: Match thesinc function with a CDF-4,m wavelet. Thesinc function has no van-
ishing moment, so the wavelet has none, too. The CDF label denotes the number of smoothness
factors of the respecting generator.
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Chapter 5

Application of matched wavelets

In this chapter we want to give an overview over an implementation of the methods derived in Chapter3
and Chapter4. Furthermore we will perform some tests based on real world data.

5.1 Software library in Modula-3

All methods we developed in this work are implemented in a Modula-3 library. Modula-3 is a successor
of Modula-2 and Pascal and somehow a sibling of Oberon [DO]. It was chosen because – as the name
suggests – it allows clean and safe modularisation, it is very expressive due to exceptions and a sophisticated
range of types, it is very safe because of static type checking and a garbage collector, but it is still a
system programming language and allows efficient machine oriented programming. The library can be
downloaded from the author’s homepagehttp://research.henning-thielemann.de/ .

We give an overview over the modules of the library according to the used directory structure. Almost
all modules are generic modules which can be instantiated for different numeric types such as floating point
numbers of various precisions and complex numbers.

• signal

– Signal
Implementation of a discrete signal from̀0 (Z), a signal consists of an array containing the
sampled data and the index, the leading element of the array is associated with, i.e. in terms of
Definition3.1.5the minimal element of the domain

– SignalFmtLex
Conversion between a discrete signal and its text representation

– ScaledSignal
A discrete signal with a sample rate, i.e. a sequence from`0 (c · Z) with c ∈ R

– Convolution
The convolution of discrete signals, implemented both naively and using the FFT [FJ]

• wavelet

– continuous

∗ transform

· ContinuousWaveletTransform
Data type for the result of the discretised continuous wavelet transform (see Section2.2.1)
· ContinuousWaveletAnalysis

Compute wavelet coefficients for a signal
· ContinuousWaveletSynthesis

Restore signal from wavelet coefficients, the reconstruction will not be perfect even in the
absence of rounding errors

– discrete

∗ basis

123

http://research.henning-thielemann.de/
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· FilterBank
Conversion between filter banks in the presence of down-sampling and polyphase filter
banks
· DyadicFilterBank

Conversion between primal and dual filters, low-pass and high-pass, both for biorthogonal
and orthogonal filter banks
· BSplineWavelet

Generate filter banks for the biorthogonal CDF family
· DaubechiesWavelet

Generate filter banks for the orthogonal DAUBECHIES family
· WaveletPlot

Plot wavelet functions associated with a filter bank [LF05]

∗ refinable

· RefinableFunction
Generation of transition matrices, the cascade algorithm
· RefinableSmooth

Estimates of the smoothness of a refinable function

∗ transform

· DiscreteWaveletTransform
Discrete wavelet analysis and synthesis for any number of channels
· DyadicDiscreteWaveletTransform

The classic discrete wavelet transform for two channels, including translation invariant
versions, see Section2.2.3and Section2.2.2
· DWTPlot

Plot wavelet coefficients of multiple levels [LF05]

∗ match

· WaveletMatch
Match a wavelet with a pattern without smoothness constraints, construction of matri-
ces for normal equations, use of LAPACK for solving the simultaneous linear equations
[ABB+99]
· WaveletMatchBasis

Basis type for matching with smoothness constraints
· WaveletMatchGradientLift

Compute the derivatives of both parts of the target functional (namely theL2 (R) distance
of pattern and wavelet, and the smoothness penalty term) with respect to the lifting filter
· WaveletMatchGradient

Put together derivatives of both parts of the target functional to a total derivative. A
coefficient forψ can be computed but it can also be fixed to a value by the caller.
· WaveletMatchSmooth

The main matching procedure supporting vanishing moment and smoothness constraints,
visualisation of the optimisation procedure

Let us now go into details of the implementation of the regularised optimisation. The simple optimisa-
tion problem

argmin
c,s

‖c · ψ + s ∗ ϕ− f‖2

is solved inWaveletMatch with LAPACK’s GELSroutine. This can either be done in the direct way
or using the optimised construction of the normal equations from Section3.3.4. An optimal solution
respecting smoothness constraints, i.e.

argmin
c,s

(∥∥c · ψ′ + s ∗ (1,−1)∗mf ∗ ϕ− f
∥∥2

2
+ λ · σ(c, s)

)
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Figure 5.1: Superconducting quantum interference device: The device for measuring fetal
magneto-encephalograms (fMEG) and the geometry of the array of 151 sensors.

Figure 5.2: A signal measured by one of the sensors. It is a superposition of mMCG, fMCG,
fMEG, uterine smooth muscle signal and noise

is approximated iteratively with NEWTON’s method in the moduleWaveletMatchSmooth . That is, we
search fors andc where the gradient of the functional is zero (or at least small). The parameterλ controls
the regularisation. Ifλ = 0 we fall back to a linear least squares problem where one iteration step solves
the equation exactly. Ifλ 6= 0 then the iteration becomes useful. Unfortunately the computation ofσ(c, s)
contains a division byc which causes instabilities. Therefore the regularisation parameterλ is increased
successively, where for eachλ some NEWTON iterations are performed. The algorithm starts withλ = 0
(or close to zero) which let the wavelet match optimally but ignores smoothness. Thenλ is increased to the
wanted value. Too large values forλ lead to heavy numerical difficulties.

5.2 Analysis of SQUID data

Now we want to test our method with real world data. It is difficult to find a problem our method can
be applied to without major modifications. Natural data usually does not have a strict dyadic multi-scale
structure that the discrete wavelet transform requires. However we will use a pattern cancellation problem
in order to demonstrate the steps of the application of our method, the difficulties and the perspectives.

Our cooperation partner HUBERT PREISSL from the Universiẗat Tübingen deals with prenatal diag-
nostics [VRM+04]. He makes use of asuperconducting quantum interference device(shortSQUID, see
Figure5.1) which is able to detect biological activities of the fetus. This device has 151 sensors, each
recording a signal at 250 Hz.

A signal of each sensor as in Figure5.2 is a superposition of
• the fetal magneto-encephalogram (fMEG),
• the fetal magneto-cardiogram (fMCG),
• the maternal magneto-cardiogram (mMCG),
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• the uterine smooth muscle signal (magneto-myogram),
• motion artifacts, and noise.

The magneto-cardiograms are quite periodic signals with rather constant wave shapes. However the periods
of both components differ. The uterine smooth muscle has a low frequency (at most 5 Hz). We are
interested in the signal of the uterine smooth muscle signal and the fetal magneto-encephalogram, both are
dominated by the magneto-cardiograms.

The uterine smooth muscle signal can be separated easily by a low-pass. We subtract that signal from
the composite signal. In other words we apply a high-pass.

We can now try to remove the magneto-cardiograms by identifying their waveforms, match a wavelet
with them, transform the signal with respect to the matched wavelet, clear the coefficients associated with
the occurrences of heart beats and transform the signal back.

In [VRM+04] the data of all channels is used to filter out the magneto-cardiograms. Of course this
leads to more reliable results but for simplicity we want to cope only with single signals here.

To be able to match the wavelet we need a prototype pattern. But our data contains two cardiograms and
noise. We could try to match the wavelet to many appearances of the maternal heart beat. It is reasonable
to match a wavelet with an average of multiple waves because this leads to the same result like matching
simultaneously with several patterns. We can verify this by comparing the zeros of the derivatives of a
general linear least squares problem. Herex stands for the lifting parameters,bi for the ith occurrence of
the pattern, andA for the matrix of the operator mapping lifting parameters to lifted wavelets.

D

x 7→ n∑
i=1

‖A · x− bi‖22

 = x 7→
n∑
i=1

2 ·A∗ · (A · x− bi)

= x 7→ 2 ·A∗ ·

n ·A · x− n∑
i=1

bi


= x 7→ n · 2 ·A∗ ·

A · x− 1
n
·
n∑
i=1

bi



= n ·D

x 7→
∥∥∥∥∥∥A · x− 1

n
·
n∑
i=1

bi

∥∥∥∥∥∥
2

2


The next step is to retrieve several patterns from a signalx. This is done by tracking the period of

the cardiogram. An initial value of the period is retrieved from the autocorrelationx ∗ x∗ of a clip at the
beginning of the signal. We choose the position of the first peak after0 as the initial periodt. Then for each
peak we look aheadt samples and search for the maximum value in an environment of this position. This
is considered as the next peak and the period is adapted accordingly. This procedure works quite well for
many signals. It could even be improved using more advanced methods which are known aspitch detection
andpitch trackingin the area of audio signal processing [Zöl02].

All found instances of waves can now simply be averaged. This leads to very smooth noise-free shapes
as shown in Figure5.4. This raises the question whether the signal can be de-noised by permanent averag-
ing. Indeed there is such a method calledcomb filter. The name is due to the comb structure of its transfer
function. [Zöl02] It is a recursive filter and thus it is computed by a recursion formula which is equivalent
to a power series division. Ifx is the input signal andy the comb filtered signal with a delay oft and a gain
of c then it holds

y = (1− c) · x+ c · y → t

y − c · y → t = (1− c) · x
y = (1− c) · x /∗ (δ − c · δ → t)

or written element-wise

∀j ∈ Z yj = (1− c) · xj + c · yj−t .
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original

original minus mMCG

Figure 5.3: SQUID signal: mMCG cancelled with comb filter

The gain should be from the interval(0, 1). If it is close to1 then the smoothing effect dominates but the
filter can react only slowly to changes in the shape.

A modulated comb filter can additionally handle varying periods. Instead of a fixed delayt we use
a sequencet of the current periods which must be interpolated from the period information we collected
at the pitch tracking stage. If two subsequent maxima are atj andk then it should betk = k − j. The
modulated comb filter is computed by

∀j ∈ Z yj = (1− c) · xj + c · yj−btjc .

To reduce resampling noise we interpolate the feedback data. Linear interpolation leads to

convexcomb (a, b, λ) = (1− λ) · a+ λ · b

∀j ∈ Z yj = (1− c) · xj + c · convexcomb
(
yj−btjc, yj−btjc−1, tj −

⌊
tj
⌋)

.

The modulated comb filter results in a cleaned cardiogram which can be subtracted from the composite
signal. The result can be seen in Figure5.3. The comb filter needs some time to adapt to the signal.
Therefore we show the result after 10 seconds. Luckily, the mMCG peaks have quite a constant shape so
the method works well. It can even discover small peaks superposed by large peaks. This can be checked
when assuming that both cardiograms are almost periodic. Indeed what remains after cancellation of the
mMCG is the magneto-cardiogram of the fetus (fMCG), the fetal magneto-encephalogram (if present) and
noise. With the same technique the remaining signal could be freed from the fMCG. We assume that the
results would be even better if all channels of the SQUID are processed.

We will continue with trying to achieve the same with a wavelet transform. The question arises whether
a matched wavelet performs better than a standard wavelet. So there is certainly more to explore but for
now we want to content with treating problems and chances of matched wavelets. We match the averaged
cardiogram wave with a wavelet complementary to a cubic B-Spline as generator. (Figure5.4) This ensures
a smooth wavelet. The shape of the wave consists of a steep part at the beginning and a flat peak at the
end. The steep part forces us to match a wavelet at a small scale. In our example we have only one level
of refinement. According to the counting in Section2.2.2we will call that scale number 2. The flat peak
at the right forces us to reserve 20 coefficients for the lifting filter. This is an unfortunate situation because
the main advantage of the DWT is its speed. Long filters undermine that.

If we do not defer vanishing moments (see Section4.3.2) the transform can be executed and inverted
but the wavelet coefficients grow considerably on every level. Small modifications like clearing single
coefficients destroy the signal on reconstruction. The reduction of the spectral radius of the transition
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Figure 5.4: Matched wavelet with maternal cardiogram: The continuous line is the averaged
waveform from the SQUID data. The dashed line is a wavelet matched with respect to the CDF-
4,8 basis where 6 vanishing moments are deferred. That is, the wavelet has 2 vanishing moments
but the opposite generator has 8 smoothness factors. So this is literally amother wavelet.

matrix cannot remedy that problem. That is, we must apply our modified transform and we must match the
wavelet with the optimisation algorithm that is adapted accordingly.

We have two alternatives: We can use the pattern matched wavelet for analysis or synthesis. In the
first case we expect peaks at every position of a wave of the maternal magneto-cardiogram. That is, we
should be able to detect these peaks. But the waves of the mMCG are so dominant that we do not need
a transformation at all in order to detect them. In the second case the pattern matched wavelet occurs in
the reconstructed signal – or not if the corresponding coefficient is cancelled. This variant seems to be the
appropriate for our application.

In a first test we want to check the quality of pattern detection of our method. To this end we transform
the extracted peak that was already used for matching. We execute the transform by simple convolution,
storing all non-zero values, i.e. we do not clip the wavelet coefficients sequences to the length of the
input signal. This is the easiest way to assert perfect reconstruction. This method means essentially zero
padding. It implies that we should ignore coefficients close to the start and the end of the coefficient
sequences because these coefficients depend on the padded zeros rather than measured data.

The low-pass filters are normalised to an EUCLIDean norm of
√

2. With this normalisation all gener-
ators have the sameL2 (R) norm which is then true for the wavelets, too. Only with this normalisation
wavelet coefficients of different scales can be compared.

According to the labelling introduced in Section2.2.2we denote the input signal withx0, the generator
coefficients sequence of the largest scalexn, and the wavelet coefficients sequences withyj , wherej ∈
{1, . . . , n}. Because we matched the pattern in scale 2 at position 0 we expect that the wavelet transform
has an exceptionally big coefficienty2.

In Figure 5.5 we have decomposed our peak prototype into five levels using correlation with the
matched wavelet. This corresponds to the first case. Since the transform is based on convolution rather
than correlation we have to flip all filters before the transformation. We observe that the sequencey2 is
quite symmetric. The reason is that apart from down-sampling this signal is a convolution of the pattern
and the flipped matched wavelet, so almost an autocorrelation function. Indeed the coefficient at position 0
on scale 2 is significantly larger than others of that scale. It is also the overall largest wavelet coefficient
but not so significant. On the one hand this will make the detection of the particular scale of a pattern
more difficult. On the other hand it weakens the influence of the strict dyadic scale graduation. For our
application the scale dependence is only important in so far as we want to detect the pattern at a specific
scale and nowhere else. Further tests show that the detection is also robust with respect to translations of
the signal.



5.2. ANALYSIS OF SQUID DATA 129

x0

y1

y2

y3

y4

y5

x5

Figure 5.5: Single peak: Discrete wavelet analysis with matched wavelet and deferred vanishing
moments. Only wavelet coefficients are shown. The coefficients are plot with respect to a dyadic
grid. The geometry would be better reflected if the positions are interleaved but this makes
reading abscissa values more complicated.x0 is the analysed signal. The transform is based on
simple convolutions without clipping, i.e. we apply zero padding. Clipping is omitted for the
sake of perfect reconstruction.
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In Figure5.6we have decomposed our peak pattern with the discrete wavelet analysis including clearing
of odd indexed coefficients and subsequent application of the vanishing moments. This data can be re-
synthesised with the matched wavelet, that is, each wavelet coefficient is mapped to the approximated
pattern. The effect of filtering with the vanishing moment mask is obvious: Oscillations as fast as the
sampling allows. The wavelet coefficient at position 0 on scale 2 is no longer the largest. At least the
largest coefficients are concentrated around position 0 on each scale.

The roughness of the wavelet coefficients sequences raises the question how sensitive the transform is
with respect to translations. For the test of shift sensitivity we transform the peak shifted by one to the
right. If the signal is shifted by multiples of 2 then scale 2 is shifted by the half distance. This implies
that only odd translations make essential differences. In Figure5.7the transform is depicted. The shift has
visible influence on the result. However the (weak) concentration of coefficients in time remains.

The next task we want to tackle is the transform of a real SQUID signal. Figure5.8 and Figure5.9
show the results. For cancellation of the mMCG signal it should suffice to transform until scale 2 because
we would not touch higher scales. Nonetheless we observe that the wavelet coefficients do not contain low
frequent components. This is of course because the wavelet coefficients are results of high-pass filtering.
We can consider the low-pass bandx5 as an approximation to the uterine muscle signal. The question
remains whether that signal could be better extracted and cancelled by a simple (shift insensitive) low-pass
filter.

When correlating the signal with the matched wavelet (Figure5.8) we clearly see the occurrence of
each peak of the mMCG at the scales from 1 to 3. But as already said, the detection of the pattern is not
the problem here since we can find it even without any transformation. In contrast to this plot in Figure5.9
there is no consistent correspondence between the pattern in the data and significant coefficients in scale 2.
This correspondence is better in scale 3 but still inhomogeneous.

The next question is: How to process the wavelet coefficients in order to extract or cancel the mMCG?
Our method would work perfectly ify2 represents the mMCG. This should apply at least to the transform
which uses the matched wavelet for the reconstruction. Figure5.10and Figure5.11show what each level of
the transform represents. These signals are obtained when all but one levels are cleared and the remaining
coefficients are transformed back to the spatial domain. We clearly see that our hope does not come true.

The problems are certainly also due to the redundancy of the transform. Redundancy means that even
if it is possible to represent the mMCG only withy2 there is no need to do so. It is also possible to
represent the mMCG with other coefficients. We do not know how to force the transform to use onlyy2

for representing the mMCG.
If our assumptions about the result of the transform were true we could simply cleary2 in order to

eliminate the mMCG. But now we can only apply some heuristics. For de-noising thresholding algorithms
are quite popular. These algorithms apply a FOURIER transform or a wavelet transform. It is assumed that
noise is present in all coefficients homogeneously but weak whereas important information is contained in
large coefficients. Because of this all coefficients are modified by a shrinkage function with respect to a
shrinking parameterλ. Popular instances aresoft shrinkageandhard shrinkage. But interim types are also
possible. [Lor05] We want to continue with the soft shrinkage. Roughly spoken the absolute value of each
coefficientc is reduced byλ and coefficients with an absolute value smaller thanλ vanish.

Sλ(c) =


c− λ : c > λ

0 : |c| ≤ λ
c+ λ : c < −λ

In our application the significant coefficients shall be caused by the pattern to be removed. Ideally, with
soft shrinkage we could extract the mMCG which can then be eliminated by subtraction. We obtain

c− Sλ(c) = min
{
λ,max {−λ, c}

}
=


λ : c > λ

c : |c| ≤ λ
−λ : c < −λ

.
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Figure 5.6: Single peak: Discrete wavelet analysis with prefetched vanishing moments. The
corresponding synthesis invokes the matched wavelet. Only wavelet coefficients are shown.x0

is the analysed signal.
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Figure 5.7: Single shifted peak: Discrete wavelet analysis with prefetched vanishing moments.



5.2. ANALYSIS OF SQUID DATA 133

x0

y1

y2

y3

y4

y5

x5

Figure 5.8: SQUID signal: Discrete wavelet analysis with matched wavelet and deferred van-
ishing moments. Only wavelet coefficients are shown.x0 is the analysed signal.
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Figure 5.9: SQUID signal: Discrete wavelet analysis with prefetched vanishing moments. The
corresponding synthesis invokes the matched wavelet. Only wavelet coefficients are shown.x0

is the analysed signal.



5.2. ANALYSIS OF SQUID DATA 135

x0

y1

y2

y3

y4

y5

x5

Figure 5.10: SQUID signal: Discrete wavelet analysis with matched wavelet and deferred van-
ishing moments. The signal components at each scale are shown. That is, forxj we plot(
xj ∗ ϕ̃

)
↑ 2j and foryj we plot

((
yj ∗ (1,−1)∗(mψ−mf )

)
� 2 ∗ ψ̃

)
↑ 2j . Cf. Section4.3.3.

x0 is the analysed signal.
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Figure 5.11: SQUID signal: Discrete wavelet analysis with prefetched vanishing moments. The
corresponding synthesis invokes the matched wavelet. The signal components at each scale are

shown. That is, forxj we plot
(
xj ∗ ϕ̃

)
↑ 2j and foryj we plot

(
yj ∗ ψ̃

)
↑ 2j . x0 is the

analysed signal.
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original

original minus mMCG

correlation with matched wavelet

reconstruction with matched wavelet

Figure 5.12: SQUID signal: cancelled pattern. The first signal is the original signal, again. For
comparison the second plot is the result from the comb filter cancellation, again. The third plot
is the result from the transform using correlation with the matched wavelet. The fourth plot was
created by reconstruction with a matched wavelet.

That is, we clip all values to the range[−λ, λ].
We will close this section with an exemplary application of the shrinkage algorithm. Because the lack

of a good strategy we clip all coefficients to a tenth of the quadratic mean. This way we stay independent
from the energy of each level. The result can be seen in Figure5.12.

5.3 Condition monitoring on linear guideways

In [P+05] PRÜNTE employs the wavelet transform with matched wavelets for the supervision of linear
guideways. Machinery must be monitored in order to detect defects early. Defects can be abrasion of
guideways or of balls in ball bearings, impurities inside of a carriage, blocking of the balls, sealing wears,
and local defects (pittings) of guideways. Sensor data shall be processed in order to encounter defects.
Ideally it is possible to classify the defects.

The cited paper analyses data from an encapsulated piezo-ultrasonic microphone in order to discover
pittings in a guideway. Depending on the speed of the machine the acoustic response of the pitting is dilated.



138 CHAPTER 5. APPLICATION OF MATCHED WAVELETS

Because of this the wavelet transform is an appropriate tool for this task. Former work on this topic was
based on the continuous wavelet transform with promising results. Defects were detected by looking for
wavelet coefficients that are above a certain threshold. With a discrete wavelet transform with respect to
matched wavelets the threshold method remains the same. The gain is of course the acceleration of the
computation. In order to reduce dependencies on the dyadic grid of scales and positions multiple wavelet
transforms are performed with respect to wavelets that are matched to slightly rescaled and translated
patterns. This can be considered as a generalisation ofphaselets.

Since the task is the plain detection of patterns no smoothness constraints for the reconstruction are
necessary. This simplifies the application but raises the question why there must be a perfect reconstruction
filter bank if no reconstruction takes place. Indeed the constraint of perfect reconstruction is justified by
the property that a perfect reconstruction transform keeps all information of the input data and nothing is
lost.

5.4 Summary and outlook

The experiences from the applications presented here are the following: Matching discrete wavelets with
patterns by lifting has proven to work. In order to be numerically stable the discrete wavelet transform must
be modified. This causes a double amount of transformed data. On the one hand this is not so bad because
of a reduced sensitivity to translations of the signal. On the other hand redundancy makes it difficult to
clearly extract or cancel certain signal components. The sensitivity to dyadic scales is less than expected
initially.

A real world application where the method works well (or even where it is superior to traditional
approaches) is still missing. Because the matching problem can be solved analytically it is possible to match
a wavelet with an analytic function. That is, mathematically motivated patterns are also good candidates for
matching and maybe there are such patterns and related problems where our method can prove its strengths.

Another way out is to modify the optimisation target. Instead of simply matching a wavelet with
a pattern we can try to solve a problem like: “Each dilated and translated version of the pattern shall
induce significant wavelet coefficients only in a specific concentrated area.” This is obviously much more
complicated.

We have seen that the coupling of vanishing moments of the primal wavelet and the smoothness of the
dual generator is an unfortunate connection. Our modified transform cannot suppress vanishing moments
and the oscillations they cause. It can only shift them to where their effect is not so serious. Future
efforts may concentrate on some of the generalisations listed in Section2.2.5such as multi-channel or
multi-wavelet transforms where no coupling between vanishing moments and smoothness exists.
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A.1 Tools

Both for the research and the preparation of this document a lot of tools was used. Their authors put much
effort into them, but they gave away the tools free of charge with full documentation and with open source
code. They shall be appreciated here. Without them this document would not be possible, at least it would
have made less fun.
• LATEX

TEX is the well-known type-setting system by DONALD E. KNUTH. LATEX by LESLIE LAMPORT is
build on TEX and provides commands for structuring documents.BibTeX was used for creating a
references list from the citations in the document and a literature data base. TheIEEEtrantools
package was used because of itsIEEEeqnarray* environment with flexible column definitions
and specific placement of equation labels with\yeslabel . In contrast to WYSIWYG systems the
TEX based type-setting allows programming and more abstraction, that is a better separation between
layout and intention.

• MetaPost
MetaPost is a programming language for graphics. It is similar toMetaFont which is the font
generation part of the TEX system. It certainly suffers from the problem that programming requires
more effort at the first time but simplifies repetitive tasks as well as later modification and corrections.

• Haskell [PJ98]
Haskell is a functional programming language, that is, everything must be expressed in terms of
functions. This means that all input and output of a piece of an algorithm is explicit. Haskell has
non-strict semantics which allow for potentially infinite data structures. The syntax is close to math-
ematical notation but prefers strictness and unambiguity to conciseness. That is, it can also help
understanding mathematical notation. Haskell supports higher order functions and is thus close to
ideas of functional analysis. TheQuickCheck package was used to verify some of the statements
of this work with random input. BothGHC, the Glasgow Haskell Compiler, and the Haskell inter-
preterHugs were used.

• lhs2TeX
This is a TEX preprocessor which was originally developed in order to typeset Haskell programs in an
appealing way. In this work it was used for inserting generated graphics and typesetting Haskell ex-
pressions in mathematical formulas. That is, some of the formulas in the document can be evaluated
in a Haskell environment.

• functional MetaPost
This package is a Haskell wrapper toMetaPost . That is, graphics can be programmed in Haskell
without directly addressingMetaPost . All flowcharts in this document are generated with this
tool.

• GNUPlot
GNUPlot is a popular plotting program. It can be invoked by a Haskell wrapper which allows
programming of plots like those of refinable functions.

• Modula-3 [DO]
Modula-3 is a safe strongly typed systems programming language. It is a joint development of Dig-
ital Equipment Corporation and Olivetti. The Polytechnique Montreal Distribution ofModula-3
is based on DEC SRCModula-3 release 3.6 with enhancements by LOUIS DUBEAU, JEROME

COLLIN and MICHEL DAGENAIS. The Critical MassModula-3 compiler is another further devel-
opment of the SRC compiler. The numerical analysis librarym3na was used as a starting point for
advanced mathematical operations.

• PLPlot [LF05]
This is a plotting library with a binary interface which can be used fromModula-3 .

• FFTW [FJ]
The “Fastest FOURIER Transform in the West” is a library which performs several tests to achieve
optimal performance an any machine. It provides algorithms with run-time proportional ton · log n
for data sets of any sizen, not only powers of 2. It can be called fromModula-3 .

• LAPACK [ABB+99]
Is the standard package for doing numerical linear algebra. We invoke it fromModula-3 .
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• SWIG
The “Simplified Wrapper and Interface Generator” assists with generating wrappers to C and C++
libraries. It was used to generate wrappers fromModula-3 to PLPlot and FFTW.

• CVS
The “Concurrent Version System” manage several versions of files. Additionally it allows developers
to merge changes that were made independently to the same file.

• Darcs
“David’s Advanced Revision Control System” is also a version management system. It is written in
Haskell. It manages patches which can be shared between several developers. A central repository
like for CVS is not necessary. With some restrictions the order of patches can be changed. It allows
renaming of files, directories and tokens.

• Integer sequence lookup [Slo03]
This is a WWW site developed and maintained by NEIL J. A. SLOANE which looks for (well-
studied) integer sequences that contain a given subsequence. This way you find an assumption that
is worth a trial of a proof. It let you easily enter into areas of mathematics you have never cared of.

• Inverse symbolic calculator, now PLOUFFE’s inverter [Plo06]
This is a WWW project, too. The inverse symbolic calculator finds expressions containing standard
algebraic and transcendent functions which approximate a given fraction. This is an invaluable tool
for finding assumptions about the structure of an expression for a value that was found numerically.
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